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Zusammenfassung

Kalte Atome in optischen Gittern haben ein großes Potenzial für die Untersuchung von
stark korrelierten Systemen und für Anwendungen auf dem Gebiet der Quanteninforma-
tionsbearbeitung. Dieses System zeichnet sich insbesondere durch ein gutes Verständnis der
mikroskopischen Dynamik und eine umfangreiche Kontrolle dieser Dynamik durch äußere
Felder aus.

In dieser Dissertation werden zwei Hauptthemen behandelt. Das erste Thema befasst
sich mit der Manipulation von Atomen in optischen Gittern, um folgende zwei Ziele zu er-
reichen: (i) Die Erzeugung von speziellen Vielteilchenzuständen, die als Ausgangspunkt für
Anwendungen auf dem Gebiet der Quanteninformation oder für die Simulation von stark ko-
rrelierten Systemen benötigt werden, und (ii) die Bewegung der Atome im Gitter durch einen
Mechanismus zu kühlen, der zu keiner Dekohärenz der internen Zustände führt. In diesem
Zusammenhang werden zwei Methoden zur Präparation von reinen Zuständen vorgeschlagen.
Eine Methode basiert auf einem kohärenten Filterprozess, die andere auf einem fehlertoleran-
ten Schema, um Atome aus einem Reservoirgas, welches nicht im optischen Gitter gefangen
ist, in das Gitter zu laden. Der Prozess des sympathetischen Kühlens, welches für die zweite
Methode benützt wird, führt unter geeigneten Bedingungen auch zu einem raschen Kühlen
der atomaren Bewegung, ohne dabei den internen Zustand zu beeinflussen.

Das zweite Hauptthema dieser Dissertation widmet sich der numerischen Berechnung der
Vielteilchendynamik in optischen Gittern. Diese Dynamik ist im Allgemeinen analytisch
nicht lösbar und kann mit traditionellen Methoden auch numerisch nur für kleine Systeme
exakt berechnet werden. Durch die Adaption von erst kürzlich entwickelten numerischen
Verfahren werden exakte zeitabhängige Berechnungen der Dynamik von Atomen in eindimen-
sionalen optischen Gittern durchgeführt. Diese Verfahren stehen in Beziehung mit gängigen
Density Matrix Renormalisation Group (DMRG) Methoden, welche zur Berechnung von
Grundzuständen in eindimensionalen Systemen verwendet werden. Es wird gezeigt, dass
die zeitabhängingen Algorithmen in existierenden DMRG Programme implementiert werden
können.

Die numerischen Methoden werden zur Untersuchung des “Ein-Atom-Transistors” ver-
wendet. In diesem System wird der Transport von Atomen durch ein einzelnes Störstellen-
Atom geschaltet. Der Fluss der Atome durch die Störstelle zeigt eine signifikante Abhängigkeit
von ihrer gegenseitigen Wechselwirkung, ein Effekt, der in einer experimentellen Realisierung
dieses Systems direkt beobachtet werden kann.





Abstract

Systems of cold atoms in optical lattices have a great deal of potential as tools in the
study of strongly correlated condensed matter systems and in the implementation of quantum
information processing. There exists both a good understanding of the microscopic dynamics
in these systems, and extensive control over those dynamics via external fields.

In this thesis two primary issues are addressed. The first is the manipulation of atoms in
optical lattice to achieve two goals: (i) the production of initial many-body states required
for applications to strongly correlated systems and to quantum information processing, and
(ii) cooling of the atoms in the lattice using a mechanism that does not cause decoherence for
their internal states. In this context, two methods for preparation of high-fidelity patterns
of atoms in optical lattices are proposed, one being a coherent filtering process that leaves
single atoms in selected lattice sites, and the other a fault-tolerant scheme to load atoms
from a reservoir gas, which is not trapped by the lattice. Under appropriate conditions, the
sympathetic cooling process between the reservoir gas and lattice atoms that forms part of
the second method gives rise to rapid cooling of the motional states of the atoms, without
altering their internal states.

The second primary issue is the numerical computation of coherent many-body dynamics
for atoms in optical lattices. These dynamics are generally intractable analytically, and can
only be treated for very small systems by traditional exact numerical methods (in which the
full Hilbert space is retained in the calculation). Through the adaption of recently proposed
numerical methods, exact time dependent calculations for atoms in one dimensional optical
lattices are performed. These methods are also related to the widespread Density Matrix
Renormalisation Group (DMRG) methods, which are used to compute ground states for one
dimensional systems, and it is shown that the time-dependent algorithms can be straight-
forwardly implemented in existing DMRG codes.

The numerical methods are applied in the study of the “Single Atom Transistor”, a
system in which a single impurity atom is used to switch the transport of probe atoms in
one dimension. We observe that the current of probe atoms passing the impurity depends
significantly on interactions between the probe atoms, an effect which should be directly
observable in experimental implementations of this system.
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Introduction





Chapter 1

General Introduction

Cold Atoms

The first realisations of Bose-Einstein Condensation (BEC) [1–5] in dilute gases in 1995 [6–
8] opened a myriad of opportunities to study quantum phenomena on a macroscopic scale.
These opportunities arise from the three distinguishing properties of the BEC experiments:
(i) That we have a detailed microscopic (Hamiltonian) description of the experimental system;
(ii) That we have extensive control over the parameters of the system via external fields; and
(iii) That we can probe both the spectroscopic and coherent properties of the system in
unprecedented detail, e.g., via density measurements and interference experiments.

During the past ten years, over fifty experiments in this field have been developed,
using a variety of atomic species (to date, Bose Einstein Condensates (BECs) had been
produced in the atomic species of Rubidium, Sodium, Lithium, Hydrogen, metastable He-
lium, Potassium, Caesium, Ytterbium, and Chromium). The experiments use laser cooling
techniques [9] and evaporative cooling [10] to obtain temperatures on the scale of a few
nanoKelvin or microKelvin required for BEC at the typical densities found in the experi-
ment, ∼ 1013 − 1015cm−3. Through such work, fundamental progress has been made in the
study of many phenomena, including atomic and molecular collisional properties [11], su-
perfluid properties (e.g., vortices and vortex arrays), aspects of matter-wave coherence (e.g.,
interference experiments, and coupled BECs acting as a Josephson Junction), and collective
excitations in trapped Bose gases.

More recently, there has also been extensive progress in the study of degenerate Fermi
gases in similar experiments [12–19], where laser cooling can be followed either by sympathetic
cooling of the Fermi gas with a BEC, or via evaporative cooling if more than one fermionic
species is present. Typical densities reached are ∼ 1013 − 1014cm−3, which are smaller than
for Bosons due to the Fermi pressure of the gases. These systems exhibit the same level of
controllability found for trapped Bosons.

For both Bosons and Fermions, magnetic [20] and optical [21] Feshbach resonances make
it possible to modify the strength of collisional interactions by providing effective off-resonant
coupling into a bound molecular state. By ramping the effective detuning of the atomic state
from the molecular state across the resonance, ultra-cold molecules can be formed from pairs
of atoms. In two-component Fermi gases, these molecules have been observed to condense
and form a molecular BEC [16–19].



4 General Introduction

The dilute gases in experiments are weakly interacting, which has contributed to the suc-
cess in using these systems to study superfluid properties and coherence properties. However,
it also leads to questions as to how to use these systems for wider applications, especially to
investigate strongly correlated systems that are of particular interest in modern condensed
matter physics and, potentially, to allow the engineering of entanglement and quantum in-
formation processing.

Optical Lattices

As was first discussed by Jaksch et. al [22] and demonstrated by Greiner et al. [23], strongly
correlated systems can be engineered with cold gases by loading them into an optical lattice.
Such lattices are formed by standing waves of laser light in three dimensions (see chapter
2), and the resulting atomic dynamics are described by Hubbard-type lattice models, which
can be reduced or extended in an experiment form many different spin and lattice models of
interest in condensed matter physics.

The available control over the system means that these Hamiltonians can be engineered
in experiments with unprecedented control over most relevant parameters. Combined with
the many accessible measurement techniques, this allows investigations of these models that
would be impossible if the same system were realised in traditional condensed matter exper-
iments. In addition, the same setup offers many possibilities to engineer entanglement and
has potential applications in quantum computing.

Using different combinations of optical lattice parameters and external fields, there exists
a veritable toolbox of techniques with which to control the dynamics of atoms in optical
lattices [24]. For example, interaction energies in the system can be controlled by varying the
depth of the lattice, as deeper lattices lead both to lower tunnelling rates between lattice sites,
and to tighter on-site confinement and hence stronger interactions amongst multiple atoms on
a single site. These interactions can then be further tailored using optical [21] and magnetic
[20] Feshbach resonances [25] to control the interatomic interactions, as in other cold gases
experiments. The laser setups used to produce optical standing waves are themselves very
versatile, potentially allowing the creation of many different lattice geometries by reposition-
ing the standing waves that form the lattice (e.g., it is relatively straightforward to produce
either triangular lattices [24] or Kagomé lattices [26] in this manner). By making lattices very
deep in a particular dimension (or two dimensions) compared with other energy scales in the
system, it is even possible to restrict the system to the ground state in that dimension, making
the system behave as an effective 2D or 1D system, as has been demonstrated in experiments
[27, 28]. Whilst optical lattice potentials are normally extremely uniform, it is also possible
to offset the energy of particular lattice sites by applying commensurate superlattices [29], or
to produce pseudo-random disorder in the lattice by applying a non-commensurate superlat-
tice. Better random disorder could also be deliberately generated in these systems, either by
adding a laser speckle pattern, or via the introduction of an additional atomic species. By in-
cluding several species simultaneously in the lattice, many different models can be generated,
and the standing wave detuning can be used to make the parameters species-dependent. For
two internal states of the same atomic species, spin-dependent optical latticed can also be
produced by manipulating the polarisation of the laser light [30].
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Similarly, there are many possibilities for making measurement on systems of atoms in
optical lattices, including measurement of interference patterns when atoms are released from
the lattice [23], and coincidence detection [31, 32] for density-density correlation functions.
There are also proposals for measuring various properties of spin systems on a lattice [33].

This range of techniques finds many important applications in the study of models from
condensed matter physics. In addition to the original realisation of the superfluid-Mott In-
sulator transition in the Bose-Hubbard model [23], various properties of the Fermi Hubbard
model [34], and of strongly correlated systems of 1D Bosons (in the Tonks gas limit) [27, 28]
have been observed in experiments. Many theoretical proposals exist for applying these tech-
niques to other lattice and spin systems. These include aspects of spin models with interesting
phases in various lattice configurations [35–37], the Kondo and other similar impurity prob-
lems [38, 39], spin glass systems [40], lattice gauge theories [41], and properties of Luttinger
liquids [42]. There are also proposals for the implementation of effective magnetic fields [43],
the study of superfluidity of fermions [44], and the investigation of complicated phases that
arise from Bose-Fermi mixtures in optical lattices [45–47]. In addition, many other so-called
toy models of condensed matter physics, which describe phenomena that are yet to be prop-
erly understood, could be implemented. These include models for important problems such
as high TC superconductivity, and experimental implementations of these models would allow
investigation of properties that are analytically inaccessible.

One major difference between atoms in optical lattices and most systems in condensed
matter physics is their excellent isolation from their environment, which leads to coherent
dynamics on long timescales. For example, the timescale for spontaneous emission events, one
of the dominant sources of decoherence, can be made of the order of seconds in these systems
(see chapter 2). Such long coherence times can be utilised for the implementation of quantum
information processing [48, 49], and several proposals exist for engineering entanglement
with systems of atoms in optical lattices. Mostly, these take qubit states to be two long-
lived internal states of atoms localised at each site in a deep lattice. This is inherently
scalable, as a large array of atoms, with a single atom each lattice site, can be produced
either for Bosons (in the Mott Insulator regime [22]) or for Fermions (by using Pauli blocking
to prevent double-occupation [50]). Gate operations in this system can be performed via
collisional [51, 52] or dipole interactions [53] between the atoms themselves. Entanglement of
a large array of atoms via controlled collisions has already been performed in an experiment
[30], producing a 1D version of the so-called cluster state required for measurement-based
quantum computing schemes [54]. Other gate schemes have also been proposed, based, for
example, on the tunnelling of atoms between neighbouring sites [55, 56], on the motional
states of atoms [57], or on strong dipole-dipole interactions between Rydberg atoms [58].
At the present time, individual addressing of atoms in particular sites presents the greatest
difficulty in implementing general purpose quantum computing in optical lattices, although
there are several possibilities to overcome this problem in the future, such as a scheme using
marker atoms [59]. However, the most immediate application of atoms in optical lattices to
quantum computing is as a quantum simulator [60]. This is the role already described above,
in which we use atoms in optical lattices to simulate lattice models from condensed matter
physics.
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Manipulation and Simulation

Thus, atoms in optical lattices provide us with the means to investigate previously intractable
many body problems, and to engineer entangled states that could be used for quantum
computation. However, engineering the appropriate Hamiltonian dynamics is not sufficient
to properly study strongly correlated systems or to perform quantum information processing.
In addition, extensive quantum control over atoms is required to prepare initial states and to
correct for imperfections that occur during experiments. For example, in order to simulate
strongly correlated systems, we must prepare sufficiently cold initial states with chosen filling
factors in the lattice and control additional defects in that state. To prepare an atomic qubit
register for quantum computation, we must ensure that we have a single atom in every lattice
site; and to perform quantum computation, we must have a way of repeatedly cooling the
system without destroying information encoded on the atomic qubits.

Manipulation of atoms in optical lattices in this manner is addressed in Part II of this
thesis. Here, two schemes for initial state preparation and a scheme for sympathetic cooling
of atoms in the lattice are presented. The first state preparation scheme consists of a laser-
assisted coherent filtering scheme, which, beginning from a state with more than one atom per
lattice site and a low probability of zero-occupation, produces a high-fidelity state of one atom
in every lattice site. This scheme can be extended to produce essentially arbitrary patterns
of atoms loaded into an optical lattice, and examples are given of the use of this scheme to
produce a BCS state for fermions with a chosen filling factor. The second preparation scheme
achieves a similar goal, but instead of utilising a coherent single-shot process, it includes an
irreversible step. This makes it possible to prepare a state with the probability for there
being one fermion per site in the lowest Bloch band of the lattice improves in time in a
fault-tolerant manner. The dissipative process used as part of this preparation scheme is the
cooling of atoms within the lattice by creation of excitations in an cold reservoir gas, which is
not trapped by the lattice. This setup is introduced in the cooling scheme of Part II, which
was originally proposed as a means to cool the motional state of atomic qubits in an optical
lattice without causing decoherence for the information encoded on their internal states. As
demonstrated by its application in the fault-tolerant loading scheme, this dissipative process
has wider applications, which are discussed briefly in chapter 13.

Another complication with atoms in optical lattices is in the theoretical analysis of the
coherent many-body dynamics, which are often analytically intractable, and can only be
treated exactly numerically for very small systems (when traditional techniques involving
dynamics computed on the full Hilbert space are used). However, in many cases it is very
useful to have insight into these dynamics in experimentally relevant situations, e.g., to
compute the state prepared as the result of a particular Hamiltonian time evolution, or to
predict basic properties of systems that can be measured in the laboratory.

Simulation of systems of atoms in a 1D optical lattice is addressed in parts III and IV of
this thesis. We make use of a new simulation method proposed by Vidal [61, 62], which makes
possible the exact computation of time evolutions for low energy states of 1D systems. This
is achieved by adaptively selecting a reduced Hilbert space, in a manner related to similar
algorithms proposed by Verstrate and Cirac [63, 64], uses similar formalisms to those used
in Density Matrix Renormalisation Group (DMRG) methods [65] (see chapter 7 for more
historical and technical details). We apply this algorithm to study the lattice models that
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describe systems of cold atoms in 1D lattices, as well as providing extensions and optimisations
of the simulation algorithm which are important in this context. We also discuss formally the
relationship between Vidal’s algorithm and DMRG and explain how Vidal’s algorithm can
be incorporated directly within widespread existing implementations of DMRG methods.

We apply these time-dependent simulation methods to the study of a “Single Atom Tran-
sistor” (SAT), in which a single impurity atom can be used to switch the transport of a
many-body system of probe atoms. To complement analytical calculations for non-interacting
Fermions and for single atoms, we compute the atomic currents past the impurity atom, and
find interesting effects that derive from interactions between the probe atoms. Using the
numerical methods we are able to make quantitative predictions for currents that would be
directly measurable in an experimental implementation of the SAT.

This thesis is thus focussed on techniques to manipulate atoms in optical lattices, and
techniques to simulate their dynamics. The resulting state preparation and cooling tech-
niques, as well as the results from our numerical simulations have significant applications in
the context of present experimental systems; applications which are intended to enhance the
application of atoms in optical lattices both to the study of strongly correlated systems, and
to quantum information processing.

Overview

This thesis contains six articles, together with additional chapters that give extra information
on the background and details of the article. At the beginning of each article, there is a short
note indicating the primary contributions of the author of this thesis to that article.

Part I of this thesis provides an introduction to systems of cold atoms in optical lattices.
This general introduction is completed in chapter 2, which gives the technical background for
these systems, and for the Hubbard and Bose-Hubbard models that describe their dynamics.

In Part II of the thesis, Manipulation of Cold Atoms in Optical Lattices, we elaborate on
the schemes mentioned above for initial state preparation and sympathetic cooling of atoms
in optical lattices. The introduction in chapter 3 is followed by three publications. The
first, in chapter 4, Defect-Suppressed Atomic Crystals in and Optical Lattice, describes the
production of high-fidelity patterns of atoms by means of a laser-assisted coherent filtering
scheme. The second, in chapter 5, Single Atom Cooling by Superfluid Immersion: A Non-
Destructive Method for Qubits, discusses a scheme to cool the motional states of atoms in
an optical lattice without causing decoherence for the internal states. The third, in chapter
6, Fault-Tolerant Dissipative Preparation of Atomic Quantum Registers with Fermions, gives
an alternative application for the cooling scheme discussed in chapter 5, in which creation
of excitations in an external reservoir is used as a dissipative process that gives rise to a
fault-tolerant loading scheme.

In Part III of the thesis, Exact Time-Dependent Simulation of Many Atoms in 1D Optical
Lattices, we discuss the exact numerical computation of coherent many-body dynamics for
atoms in optical lattices. Chapter 7 details the background of Vidal’s algorithm essentially
as it was originally presented, together with some comments on its practical implementation.
Chapter 8 discusses extensions to the method that have been implemented, and provides
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two simple example calculations illustrating the power of the algorithm. Chapter 9 is then
a publication, Time-dependent density-matrix renormalisation-group using adaptive effective
Hilbert spaces, which discusses the relationship between Vidal’s algorithm and DMRG, and
provides a prescription for users of existing DMRG implementations to extend these to time-
dependent calculations in a straight-forward manner.

In Part IV, A Single Atom Transistor in a 1D Optical Lattice, we use these simulation
methods as part of the investigation of the Single Atom Transistor system. After a brief
introduction in chapter 10, two publications are presented. Chapter 11, A Single Atom Tran-
sistor in a 1D Optical Lattice details the system and its basic properties, whilst chapter 12,
Numerical Analysis of Coherent Many-Body Currents in a Single Atom Transistor provides
more details on the application of the simulation methods from part III, and gives further
examples of interaction effects on the many-body currents through the SAT.

The thesis concludes with an outline of future directions for this work in chapter 13.
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Chapter 2

Background: Cold Atoms in Optical Lattices

As discussed in chapter 1, the recent success of systems in optical lattices has been the
possibility to take a relatively uncomplicated physical system and use it to engineer important
model Hamiltonians, especially the Bose-Hubbard and Hubbard models. In this chapter the
fundamental physics of these systems is outlined, beginning with the basic properties of cold
atoms in an optical standing wave, and proceeding to the Wannier basis description and the
derivation of the Bose-Hubbard model. The basic properties of this model are also discussed.

2.1 Optical Lattices

We begin by considering the basic physics of an atom coupled to classical, single-mode laser
light with wavenumber kl and frequency ωl, forming a standing wave in 1D, as depicted
schematically in Fig. 2.1. The atom is initially in an electronic ground state |g〉, and this
state is coupled by the laser light to an excited internal state |e〉. We assume that the
frequency ωl is sufficiently far from the frequencies required to couple |g〉 to internal states
other than |e〉, that intensity of the light is sufficiently weak so that other internal states do
not play a role in the dynamics and may be eliminated in perturbation theory. (In practice we
will use far detuned laser light for an optical lattice, in which case the resulting potential will
be a sum over contributions from all excited states. See the paragraph at the end of section
2.1.1.) The energy difference between the states |e〉 and |g〉 is ~ωeg. In the interaction picture,
the behaviour of the system, including the motion of the atom and spontaneous emissions of
photons from the atom in the state |e〉, is described by the stochastic Schrödinger equation
[1, 2] (with ~ ≡ 1),

d|Ψ(t)〉 =

(

−iĤeffdt+
√

Γ

∫ 1

−1
du
√

N(u)e−ikegux̂dB̂†
u(t)|g〉〈e|

)

|Ψ(t)〉, (2.1)

Ĥeff =
p̂2

2m
+

(

δ − i
Γ

2

)

|e〉〈e| − Ω(x̂)

2
(|g〉〈e| + |e〉〈g|). (2.2)

Here, the effective Hamiltonian Ĥeff consists of three parts: The kinetic energy term, where
p̂ is the momentum operator, and m is the atomic mass; a term accounting for the detuning,
δ = ωl−ωeg, of the laser from resonance, and the influence of spontaneous emissions with rate
Γ; and a term describing the coupling of the states |g〉 and |e〉 with effective Rabi frequency
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|g〉

|e〉

ωeg ωl

kl kl

δ

Figure 2.1. Schematic diagram showing a two level atom with states |g〉 and
|e〉 separated by energy ~ωl interacting with a standing wave of light formed by
two lasers with wavenumber kl and frequency ωl. The detuning of the lasers
from resonance δ = ωl − ωeg.

Ω(x̂) = 2µeg.E(x̂, t), which depends on the applied electric field E(x̂, t) and the dipole matrix
element for the states |g〉 and |e〉, µeg = 〈e|µ̂|g〉. The second term in Eq. 2.1 describes
the quantum jumps associated with spontaneous emission of a photon and transition from
|e〉 → |g〉, with a normalised distribution of momentum recoil projected onto the axis of the
standing wave N(u), and spontaneous emission rate Γ = |µeg|2w3

eg/(3πǫ0~c
3). The operator

dB̂†
u(t) corresponds to an Ito noise increment in this process[1].

2.1.1 Periodic Potential

If we write the state |Ψ(t)〉 = |ψe(t)〉 ⊗ |e〉 + |ψg(t)〉 ⊗ |g〉, then the equations of motion for
|ψe(t)〉 and |ψe(t)〉 are given by

d|ψe〉
dt

= −i

(

δ − i
Γ

2
+

p̂2

2m

)

|ψe(t)〉 + i
Ω(x̂)

2
|ψg(t)〉 (2.3)

and

d|ψg(t)〉 = −i

(

p̂2

2m

)

dt|ψg(t)〉 +

(

i
Ω(x̂)

2
dt+

√
Γ

∫ 1

−1
du
√

N(u)e−ikegux̂dB̂†
u(t)

)

|ψe(t)〉.
(2.4)

In the limit where the detuning |δ| ≫ |Ω|,Γ, and where the detuning is also larger than
the kinetic energy (and thus the recoil energy ER = ~

2k2
l /(2m)), the excited state may be

adiabatically eliminated. Setting d|ψe〉/dt ≈ 0 and neglecting the kinetic energy term in Eq.
2.3, we obtain

|ψe(t)〉 =
Ω(x̂)

2δ − iΓ
|ψg(t)〉. (2.5)

The resulting equation of motion for the atom in the ground state is then given by

d|ψg(t)〉 ≈
[

−i

(

p̂2

2m
− Ω2(x̂)δ

4δ2 + Γ2
− iΓ

2
ĉ†ĉ

)

dt+
√

Γ

∫ 1

−1
du
√

N(u)e−ikegux̂dB̂†
u(t)ĉ

]

|ψg(t)〉,
(2.6)

where ĉ = Ω(x̂)/(2δ − iΓ). The resulting optical potential is then

V (x) = − Ω2(x)δ

4δ2 + Γ2
≈ −Ω2(x)

4δ
= −Ω2

0

4δ
sin2(klx) = V0 sin2(klx), (2.7)
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where we have used the spatial dependence of Ω for the 1D standing wave, Ω(x) = Ω0 sin(klx),
and defined the depth of the lattice V0 = Ω2

0/(4δ). This potential can be easily modified using
additional lasers and a variety of geometries to change the spatial dependence of Ω(x), or
using the polarisation of the laser light to make the potential state-dependent (by varying
µeg). This versatility is discussed in more detail in section 2.5.

In a deep lattice, the ground state wavefunction of an atom trapped in one of the potential
minima will be much smaller than the lattice periodicity. In this limit, the optical potential
for the atom may also be approximated by a Harmonic potential,

VHO =
mω2

Tx
2

2
, (2.8)

with trapping frequency

ωT =
Ω0kl√
2mδ

=

√

2V0k2
l

m
= 2
√

V0ER. (2.9)

The ground state wavefunction for the atom is then well approximated by the Harmonic
Oscillator wavefunction,

ψHO
0 (x) =

√

1

π1/2a0
e−x2/(2a2

0), (2.10)

with the size of the ground state a0 =
√

~/(mωT ). Note that this approximation is valid in
the regime where a0 ≪ a, where a = π/kl is the lattice periodicity.

In the case of a 3D optical lattice, the basic physics is the same, and there are only
a few minor adjustments. A potential is formed in three dimensions by three independent
standing waves, with interference effects amongst the different standing waves suppressed by
either the choice of orthogonal light polarisations or by slightly detuning the standing waves
from one another. In practice, the laser(s) will be far-detuned, and the resulting potential
will not result from coupling to one excited state, |e〉, but instead will be given by a sum
of the contributions from all internal states of the atom. For the purposes of estimating the
effective spontaneous emission rate, Γeff , we can normally consider the coupling to a single
(or to few) excited states, as the relative detuning varies sufficiently from state to state that
the contributions from most states are extremely small.

2.1.2 Spontaneous Emissions

Providing that the effective rate of spontaneous emissions, Γeff , is small, the dynamics of
the atom will obey a Schrödinger equation with a periodic potential provided by the optical
standing wave. For many applications with which we are concerned in this thesis, spontaneous
emissions constitute one of the largest sources of decoherence, and it is mostly preferable and
often imperative to limit the experiment to times small in comparison with 1/Γeff . Here we
estimate the rate of spontaneous emission for an atom localised near one of the potential
minima, which (as we will see) is a good approximation for the system in the limit which
is well described by Bose-Hubbard and Hubbard models. As we are primarily interested in
these results when the lattice is deep, we will use the Harmonic oscillator approximation in
our calculations.
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Blue-detuned lattices

If the optical standing wave is blue-detuned, i.e., ωl > ωeg, then the potential minima will be
the points of zero intensity in the standing wave. The effective spontaneous emission rate is
then given by

Γeff ≈ Γ〈ψHO
0 |ĉ†ĉ|ψHO

0 〉 ≈ −ωT

4δ
Γ, (2.11)

which can be made extremely small in a far detuned lattice (δ ≪ ΩT ,Γ). For example, a
blue-detuned optical lattice with wavelength λ = 514 nm for 23Na, inducing an S1/2 → P3/2

transition with λeg = 589 nm, Γ = 2π × 10MHz, and ER ≈ 2π × 33 kHz, gives a detuning
δ = −2.3 × 109ER. For a lattice depth V0 = 25ER with trapping frequency ωT = 10ER, the
resulting effective spontaneous emission rate Γeff ∼ 10−2s−1, which corresponds a time scale
of the order of minutes.

Red-detuned lattices

If the optical standing wave is red-detuned, i.e., ωl < ωeg, then the potential minima will
be the points of maximum light intensity in the standing wave. The resulting effective
spontaneous emission rate is, in general, significantly higher than in the blue-detuned case,

Γeff ≈ Γ〈ψHO
0 |ĉ†ĉ|ψHO

0 〉 ≈ − Γ

4δ

(

Ω2
0

δ
− ωT

)

≈ V0

δ
Γ. (2.12)

In a typical experiment, the rate of spontaneous emission events can also be heavily reduced
by using far-detuned lattices. For a typical current experiment with a red-detuned optical
lattice with wavelength λ = 852 nm for 87Rb, inducing an S1/2 → P1/2 transition with
λeg = 795 nm, Γ = 2π × 6MHz, and ER ≈ 2π × 3.1 kHz, gives a detuning δ = 8.0 × 109ER.
For a lattice depth V0 = 25ER with trapping frequency ωT = 10ER, the resulting effective
spontaneous emission rate Γeff ∼ 0.2×10−2s−1, giving a timescale which is again of the order
of minutes.

In practice, when the detuning of the lattice is chosen, other factors must be taken into
account, especially the possibility for loss of atoms from the lattice due to light-assisted
inelastic collisions. These occur when the effective detuning from resonances changes as a
result of the interatomic potential, leading to resonant coupling of two free atoms either
to a bound molecular states or different unbound states (for a red or blue-detuned lattice
respectively) [3].

2.2 Bloch Waves

On timescales where spontaneous emissions can be neglected, the coherent dynamics of a
single atom in the standing wave will then be described by the Hamiltonian

Ĥ =
p̂2

2m
+ V0 sin2(klx). (2.13)
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2.2.1 Band Structure

The eigenstates of this Hamiltonian are then the Bloch eigenstates [4], which have the form

φ(n)
q (x) = eiqxun

q (x), (2.14)

where q is the quasimomentum of the eigenstate, q ∈ [−π/a, π/a], and u
(n)
q (x) are the eigen-

states of the Hamiltonian

Hq =
(p+ q)2

2m
+ V0 sin2(klx), (2.15)

and have the same periodicity as the potential (u
(n)
q (x+a) = u

(n)
q (x)). The Bloch eigenstates

are normalised so that
2π

a

∫ a

0
|φ(n)

q (x)|2dx = 1. (2.16)

Whilst uq(x) are, in general, complicated functions, they are relatively simple to compute
numerically, e.g., by writing the Fourier expansion

u(n)
q (x) =

1√
2π

∞
∑

j=−∞
c
(n,q)
j ei2klxj , (2.17)

which allows us to reduce Eq. 2.15 to a linear eigenvalue equation in the complex coefficients
cj ,

l
∑

j′=−l

Hjj′c
(n,q)
j′ = E(n)

q c
(n,q)
j . (2.18)

Here, Hjj = (2j + q/kl)
2ER + V0/2 for j = j′, Hjj′ = −V0/4 for |j − j′| = 1, and Hjj′ = 0

otherwise. This problem can be diagonalised by restricting j ∈ {−l, . . . , l}, and we find for the
lowest few bands that good results are obtain for relatively small l ∼ 10. The resulting band

structure, given by the energy eigenvalues, E
(n)
q , taken as a function of the quasimomentum,

q are plotted in Fig. 2.2. Depending in each case on the depth of the lattice, particles in

the lowest bands, with E
(n)
q < V0 are in bound states of the potential, whilst the higher

bands E
(n)
q > V0 correspond to free particles. The lowest two bands are separated in energy

approximately by the trapping frequency, ωT . When we derive the Bose-Hubbard model we
will assume that the temperature and all other energy scales in the system are smaller than
ωT , allowing us to restrict the system to the lowest Bloch band.

2.2.2 Wannier Functions

It is often very convenient to express the Bloch functions in terms of Wannier functions,
which form a complete set of orthogonal basis states. The Wannier functions are given in 1D
by

wn(x− xi) =

√

a

2π

∫ π/a

−π/a
dqun

q (x)e−iqxi , (2.19)
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Figure 2.2. Band energies E/ER in 1D as a function of q for the optical
potential V0 sin2(klx), for (a) V0 = 5ER, (b) V0 = 10ER, and (c) V0 = 25ER.
The lattice spacing, a = π/kl.

where xi are the minima of the standing wave. Each set of Wannier functions for a given n
can be used to express the Bloch functions in that band,

u(n)
q (x) =

√

a

2π

∑

xi

wn(x− xi)e
ixiq. (2.20)

The Wannier functions have the advantage of being localised on particular sites, which makes
them useful for describing local interactions between particles.

The Wannier functions are not uniquely defined by Eq. 2.19, because the wavefunctions

φ
(n)
q (x) are arbitrary up to a complex phase. However, as shown by Kohn in 1959 [5],

there exists for each band only one real Wannier function wn(x) that is either symmetric
or antisymmetric about either x = 0 or x = a/2, and falls off exponentially, i.e., |wn(x)| ∼
exp(−hnx) for some hn > 0 as x→ ∞. These Wannier functions are known as the maximally
localised Wannier functions, and we will use this choice for the Wannier functions in the rest
of our discussions. If the Bloch functions are computed as described in section 2.2.1, the
maximally localised Wannier functions can be produced from the integral in Eq. 2.19 if all
cn,q
m are chosen to be real for the even bands, n = 0, 2, 4, . . . , and imaginary for the odd bands
n = 1, 3, 5, . . . , and are chosen to be smoothly varying as a function of q. (Numerically, one
can ensure smoothness by choosing, e.g., that cn,q

l ≥ 0 for some particular l).

Examples of maximally localised Wannier functions for n = 0, 1 are plotted in Fig. 2.3.
On the central site these functions bear strong relationship to the ground and first excited
state wavefunctions for the harmonic oscillator, and indeed for many analytical estimates of
onsite properties the Wannier functions may be replaced by harmonic oscillator wavefunctions
if the lattice is sufficiently deep. The major difference between the two is that the Wannier
functions are exponentially localised (as see in the lower plots of Fig. 2.3), whereas the
harmonic oscillator wavefunctions decay more rapidly in the tails as exp[−x2/(2a0)

2].



2.3 The Bose-Hubbard Model 19

-0.2

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

10
-6

10
-4

10
-2

10
0

x/a

|w
n

(x
)|

-0.5

0

0.5

-4 -3 -2 -1 0 1 2 3 4
10

-5

10
0

x/a

w
n

(x
)

Figure 2.3. Wannier Functions wn(x) in units
√

2π/a for n = 0 (left)
and n = 1 (right), plotted for V0 = 10ER (solid line) and V0 = 5ER (dashed
line). The lower plots show the absolute version of the Wannier functions on
a logarithmic scale. The position of the periodic potential is indicated on the
upper plots.

2.3 The Bose-Hubbard Model

In it’s simplest form, the Bose-Hubbard model describes bosonic particles on a lattice, which
have a hopping amplitude J to transfer between neighbouring sites, and which exhibit local
interactions with an onsite energy shift U when two atoms are present on one site. The
Hamiltonian, in terms of bosonic creation and annihilation operators b̂†i and b̂i that obey the
standard commutator relations, is given (~ = 1) by

Ĥ = −J
∑

〈i,j〉
b̂†i b̂j +

U

2

∑

i

n̂i(n̂i − 1) +
∑

i

ǫin̂i, (2.21)

where 〈i, j〉 denotes a sum over all combinations of neighbouring sites, n̂i = b̂†i b̂i and ǫi is
the local energy offset of each site. For bosonic atoms in optical lattices, ǫi can include, for
example, the effects of background trapping potentials, superlattice, or fixed disorder.

2.3.1 Derivation of the Bose-Hubbard Hamiltonian

Under certain conditions, the Bose-Hubbard Hamiltonian can be derived directly from the
microscopic description of a cold atomic gas, as was first performed by Jaksch et al. [6]. In
the limit of low energies, where the only significant contribution to the interactions between
atoms comes from s-wave scattering, the interatomic potential U(x) can be replaced by a
contact-interaction pseudopotential [7],

U(x) =
4π~

2as

m
δ(x) = g δ(x), (2.22)
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with the scattering length as as the only parameter. In the presence of a potential V (x), the
second-quantised Hamiltonian in terms of the bosonic field operators Ψ̂(x) is

Ĥ =

∫

dxΨ̂†(x)

(

− ~
2

2m
∇2 + V (x)

)

Ψ̂(x) +
g

2

∫

dxΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x) (2.23)

We now expand the field operators in terms of Wannier functions,

Ψ̂(x) =
∑

i.n

wn(x − xi) b̂n,i, (2.24)

where for a 3D cubic lattice the Wannier function wn(x), x = (x, y, z) is a product of the 1D
Wannier functions, wn(x) = wnx(x)wny(y)wnz(z). It is then possible to reduce Eq. 2.23 to
Eq. 2.21 with the parameters J , U , and ǫi given by

J = −
∫

dxw0(x)

(

− ~
2

2m
∇2 + V0 sin2(klx)

)

w0(x− a), (2.25)

U = g

∫

dx |w0(x)|4, (2.26)

ǫi =

∫

dx |w0(x − xi)|2 (V (x − xi)) , (2.27)

under the following assumptions:

1. That the tunnelling matrix elements between neighbouring sites J are much larger than
those between next-nearest neighbours, i.e.,

−
∫

dxw0(x)

(

− ~
2

2m
∇2 + V0 sin2(klx)

)

w0(x− la), (2.28)

for integer l > 1.

2. That the offsite interaction terms, e.g.,

g

∫

dx |w0(x − xi)|2|w0(x − xj)|2, (2.29)

are small compared with the other quantities in the model.

3. That the Temperature T , and interaction energies U〈n̂〉/2 are much less than the trap-
ping frequency ωT , which gives the separation between the Bloch Bands, so that we
may restrict the system to Wannier states in the lowest band, eliminating the others in
perturbation theory.

All of these conditions are fulfilled provided that the lattice is deeper than V0 ∼ 2ER. Typical
corresponding parameter values as a function of V0 are plotted in Fig. 2.4. We see that even
for V0 = 1ER the offsite interaction energies (Fig. 2.4a) are an order of magnitude smaller
than the onsite interaction energies, and that they decrease rapidly as the lattice becomes
deeper and the Wannier functions better localised. The same occurs for the second-neighbour
and third-neighbour hopping as compared with the nearest neighbour hopping (Fig. 2.4b).
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Figure 2.4. (a) Interaction energies U in units of ERas/a calculated from
Wannier functions as a function of V0/ER. Values are shown for onsite in-
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element in Wannier functions. Nearest neighbour contributions to U00 are also
shown. All values are for an isotropic 3D lattice. (b) Tunnelling matrix ele-
ments in the lowest band J0/ER calculated for nearest neighbours, and for 2nd
and third neighbours along one dimension.

We also see that as the lattice becomes deeper and the Wannier functions are better localised
U increases whilst J decreases. This can be used in an experiment to tune the ratio U/J .

By taking the Fourier transform of the Bose-Hubbard Hamiltonian, we see that the hop-
ping term in position space corresponds to the normal tight-binding model [4] dispersion
relation, with εk = −2J cos(ka). Thus, J can be most easily computed as a quarter the
energy range for the Bloch band.

It is also possible to create multi-band Hubbard models, of the form

Ĥ2 Band = −
∑

〈i,j〉

(

J0b̂
†
0,ib̂0,j + J1b̂

†
1,ib̂1,j

)

+
1

2

∑

i

[U00n̂0,i(n̂0,i − 1) + U11n̂1,i(n̂1,i − 1)]

+U10

∑

i

n̂0,in̂1,i +
∑

n,i

ǫn,in̂n,i, (2.30)

with the same assumptions applied as in the single-band model. Because the higher bands
are not as deeply bound as lower bands, |Jn| increases with n. Whilst the interaction energy
in the upper bands is smaller than that in lower bands, (see, e.g., U11 in Fig. 2.4a), the
interaction energy for two atoms in different bands is reasonably large, and the energy shift
for two atoms, one in the band n = 0 and the other in the band n = 1 approaches U00 for
deep lattices (in the Harmonic oscillator approximation these energy shifts are identical).
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2.3.2 Basic Properties of the Bose-Hubbard Model

The zero-temperature phase diagram of the Bose-Hubbard Model with ǫi = 0 was first inves-
tigated by Fisher et al. [8], and has since been extensively studied. This phase diagram is
qualitatively similar in all dimensions, despite substantial quantitative differences, and this
phase diagram is schematically plotted in Fig. 2.5. In the limit (U/J) → 0, the ground state
of the system is superfluid, and the atoms are delocalised around the lattice. For a lattice of
M sites, this ideal superfluid state can be written as

|ΨSF 〉 =

(

1√
M

M
∑

i=1

b̂†i

)N

|0〉, (2.31)

which for N,M → ∞ at fixed N/M tends to

|ΨSF 〉 =
M
∏

i=1

[

exp

(
√

N

M
b̂†i

)

|0〉i
]

, (2.32)

which is locally a coherent state with Poisson number statistics. In 3D, this state is an ideal

BEC in which all N atoms are in the Bloch state φ
(n=0)
q=0 (x). Superfluid states at (T=0)

exhibit off-diagonal long-range order (or quasi-long range order in 1D), with the off diagonal

elements of the single particle density matrix, 〈b̂†i b̂j〉 decaying polynomially with |i− j|.
As U/J increases, a regime exists in which the onsite interactions make it less favourable

to particles to hop to neighbouring sites. Provided that the number of particles and lattice
sites are commensurate, a phase transition then occurs to the Mott Insulator (MI) regime, in
which particles are essentially localised at particular sites in the sense that their mean square
displacement is finite. In the limit J/U → 0, this state corresponds to a fixed number of
atoms on each site,

|ΨMI〉 =
∏

i

|n̄〉i, (2.33)

where n̄ = 〈n̂〉 = N/M is the average filling factor. The MI regime appears as lobes in the
phase diagram corresponding to an integer fixed filling factor (see Fig. 2.5). For finite J/U ,

the off diagonal elements of the single particle density matrix, 〈b̂†i b̂j〉, decay exponentially for
a MI state as a function of |i− j|.

At fixed integer n̄, the transition point in 2D or 3D is well described by mean-field theories,
with (U/J)c = 5.8z for n̄ = 1 and (U/J)c = 4n̄z for n̄ > 1, where z is the number of nearest
neighbours for each lattice site (in a 3D cubic lattice, n̄ = 6). In 1D, the deviations from
mean-field results are large, and (U/J)c = 3.37 [9] for n̄ = 1 and (U/J)c = 2.2n̄ for n̄ > 1.

If n̄ is fixed and non-integer (see, e.g., the line 〈n̂〉 = 1 + ε in Fig. 2.5), then even in the
limit U ≪ J , there is a fraction of atoms which can remain superfluid on top of a frozen
Mott-Insulator core (which will exist for n̄ > 1) provided J > 0. Indeed these atoms need
not be affected by increasing U/J, as they can gain kinetic energy by delocalising over the
lattice without two of them being present at the same site.

In an external Harmonic trap, ǫl = Ωl2 with a fixed number of particles, the local chemical
potential, µ, varies across the trap, decreasing from the centre to the edges. As a result,
regions exhibiting alternately the superfluid and MI phases appear (See chapter 8 for example
calculations of the ground state of such systems).
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2.4 The Hubbard Model for Fermions

In a similar manner to the procedure in section 2.3.1, one can show that the microscopic
Hamiltonian for two fermionic spin species reduces to the Hubbard model,

Ĥ = −J
∑

〈i,j〉,σ
ĉ†iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ +
∑

i,σ

ǫin̂iσ, , (2.34)

with fermionic operators ĉi, which obey the standard anti-commutator relations, and σ ∈ {↑
, ↓}. This is a simple example of the many two-species models that can be engineered with
atoms in optical lattices.

2.5 Spin-Dependent Optical Lattices

As discussed in chapter 1, the greatest strength of atoms in optical lattices is our ability to
engineer a wide range of Hamiltonians with excellent control over system parameters [10].
One technique in this context that is mentioned throughout this thesis is the possibility to
create spin dependent lattices for different internal states of a single atomic species. This
is based on the strong dependence of the dipole matrix elements µ, and hence the Rabi
frequency Ω(x) in Eq. 2.6, on the polarisation of the light forming the standing wave.
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are denoted ω1 and ω2 respectively. When the tuning ω = ωL, the shift for the
state with ms = −1/2 is zero.

A specific example of this is shown in Fig. 2.6 for alkali atoms with nuclear spin I = 3/2,
which includes the species 23Na and 87Rb which are commonly used in lattice experiments.
Circularly polarised σ+ light couples the level S1/2 with ms = −1/2 to the ms = +1/2 states
in both the P3/2 level and the P1/2 level. The sum of the resulting AC Stark shifts (with
opposite detuning) gives rise to a point at which the total shift of the ms = −1/2 state is
zero (ω = ωL in Fig. 2.6b). As σ+ light couples the S1/2, ms = +1/2 state only to the
P3/2, ms = +3/2 level, the level shift for this state is non-zero. At the same frequency as
this occurs, ω = ωL, the AC-Stark shift due to σ− light for the S1/2, ms = +1/2 state is
zero, so that the potentials V± for the S1/2, ms = ±1/2 states are independently generated
by light with polarisation σ±. The level shifts for the hyperfine states are then related to
the level shifts for the fine structure states via Clebsch-Gordan coefficients, so that, e.g.,
V (F = 2,mF = 2) = V+(x), V (F = 1,mF = 1) = 3V+(x)/4 + V−(x)/4, and V (F = 1,mF =
−1) = V+(x)/4 + 3V−(x)/4.

These techniques were demonstrated in an experiment by Bloch and his coworkers [11],
who showed that by changing the angle of polarisation ϕ between two running waves, it was
possible to shift the nodes of potentials for two states, so that V±(x) = sin2(klx± ϕ).
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Chapter 3

Manipulation of Cold Atoms in an Optical

Lattice

In part II of this thesis we discuss techniques to manipulate atoms in optical lattices in
order to achieve two primary objectives:

1. The production of initial states required for quantum computing (an atomic qubit
“register”, with one atom in every lattice site), and for the study of strongly correlated
systems (e.g., states of precisely known filling factors)

2. The cooling of the motional states of atoms in an optical lattice without causing deco-
herence for the internal states.

The first objective is addressed by two state preparation schemes, which are designed to
produce high fidelity arrays of atoms in optical lattices. These arrays are patterns of occupied
and unoccupied sites, which can determined by using a superlattice to shift the energy level
at each site. The first scheme relies on coherently filtering an existing state (chapter 4) so
that one atom is left in every lattice site, and the second scheme involves filling the lattice
from an external reservoir gas, which is not trapped by the lattice. In this second scheme,
cooling of the motional state of atoms in the lattice due to interactions with the atoms still
in the reservoir gas makes the dynamics irreversible and the scheme fault-tolerant (chapter
6). This sympathetic cooling mechanism was originally investigated as a method to achieve
the second objective, i.e., cooling the motional states of atoms in the lattice by dissipating
energy in the form of excitations in the reservoir gas, without altering the internal state of
the atoms (chapter 5).

3.1 Coherent Laser-Assisted Filtering of Atoms

The first state preparation scheme, presented in the publication in chapter 4 begins by taking
a Mott Insulator state of bosons with a filling factor greater than one, where the probability
that a lattice site is unoccupied is small. Then the initial internal atomic state |a〉 is coupled
to a second internal state |b〉, using either an oscillating microwave field or a Raman setup
(which consists of two lasers that can couple two hyperfine states via an off-resonant coupling
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to an excited level). State |b〉 is trapped by an independent lattice, and by sweeping the
detuning of the coupling transition over a range of frequencies, exactly one atom per lattice
site is transferred adiabatically (see below) into |b〉, regardless of how many atoms were
initially present in the site. This range is, in general, different for each possible number of
atoms initially present on the site, and is determined by the interaction strengths between
atoms in the same and different internal states. The key to the filtering process is to adjust
those interaction strengths, so that the detuning can be swept over a range of frequencies
that will produce the transfer of exactly one atom irrespective of the initial site occupation.
The resulting fidelities are potentially very high, and are fundamentally limited primarily by
the probability that a site is initially unoccupied.

This scheme can be extended to arbitrary patterns of atoms by using a superlattice to
shift the relative energy of the internal states, and thus prevent atoms in particular lattice
sites from being coupled to state |b〉. This technique can also be applied to fermions, where
it is particularly useful for selecting the filling factor of an initial state, and can also be used
to aid in the calculation of correlation functions. This is illustrated in chapter 4 by a scheme
to produce a BCS state of fermions with a chosen filling factor.

3.1.1 Adiabatic Transfer

The concept of adiabatic transfer from one state to another is the key to this coherent filtering
scheme. This process occurs because if a parameter of the Hamiltonian is changed sufficiently
slowly in time, then the system will remain in a particular energy eigenstate as the system
evolves. At the beginning of the evolution the initial state corresponds to one of the energy
eigenstates, and at the end it corresponds to the same energy eigenstate, but potentially a
different physical state, as the Hamiltonian, and thus the eigenstates have been changed. The
eigenstates as a function of the parameter being varied are often referred to as the dressed
states of the system.

To write the adiabatic approximation explicitly, we can express the state of the system
in terms of the energy eigenstates, Ĥ(t)|ψn(t)〉 = En(t)|ψn(t)〉, of the Hamiltonian Ĥ, i.e.,
|Ψ〉 =

∑

k ck(t)|ψk(t)〉. Then, from the Schrödinger equation we obtain the coefficients ck(t),

i~
d

dt
ck(t) =

(

Ek − 〈ψk(t)|i~
d

dt
|ψk(t)〉

)

ck(t) −
∑

n6=k

〈ψk(t)|
(

d
dtĤ(t)

)

|ψn(t)〉
En(t) − Ek(t)

cn(t). (3.1)

In the limit where Ĥ(t) changes sufficiently slowly, specifically,

∣

∣

∣

∣

〈ψk(t)|
(

d

dt
Ĥ(t)

)

|ψn(t)〉
∣

∣

∣

∣

≪ |En(t) − Ek(t)| , (3.2)

we can then neglect the coupling terms between different energy eigenstates, and the system
will remain in the same dressed state as the Hamiltonian is modified.

In a non-ideal case, the coupling into other dressed states, known as Landau-Zener tun-
nelling [1, 2] depends on the separation of the eigenvalues and the rate with which the
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Hamiltonian changes in time. In the case originally studied by Zener, the Hamiltonian for a
two level system in the state basis |a〉, |b〉 has the form

Ĥ(t) =
Ω

2
(|a〉〈b| + |b〉〈a|) − V (t)|b〉〈b|, (3.3)

where V (t) = −vt for some constant v. If we start in the state |ψ〉 = |a〉 at t = −∞ then
provided v ≪ Ω, we can estimate the occupation probability for the state |b〉 for t → ∞ as
|〈1|ψ〉|2 ≈ exp[−πΩ2/(2v)].

3.2 Sympathetic Cooling of Atoms in an Optical Lattice by a

Cold Reservoir

The cooling scheme presented in chapter 5 was originally designed to approach the problem of
cooling the motional state of atoms in a deep optical lattice without causing decoherence for
the internal state of the atom, which can potentially encode qubit information. In this case we
approximate each lattice site as a harmonic trap, and consider this trap to be immersed in a
cold, weakly interacting Bose gas [3]. The atoms interact with this cold reservoir reservoir via
a density-density interaction, and can generate Bogoliubov excitations in the Bose gas. We
show that provided the internal states of the atoms in the lattice used to encode qubit states
are chosen carefully, together with the internal state for the reservoir gas, that decoherence
can be eliminated by making the interaction between the lattice atoms and the atoms in the
reservoir symmetric for the two qubit internal states.

We derive the resulting cooling rates, and find that the problem divides into two clear
limiting cases. The first is when the motion of the atoms in the lattice is typically subsonic
with respect to the sound velocity in the reservoir gas, and the other is when the motion of
the atom is typically supersonic with respect to the velocity of sound. The latter case is the
experimentally relevant limit, and we show that in this case cooling of the lattice atom from
the first excited state to the ground state occurs on the order of 10 oscillator cycles. We also
study the effects of finite temperature in the reservoir gas, and see that the atoms in the
lattice are cooled to a thermal distribution, but that for typical experimental parameters this
amounts for all practical purposes to full ground state cooling.

The cooling rates are derived twice, once with a full quantum master equation treatment
and once applying Fermi’s golden rule, and then evaluating the resulting matrix elements
in the semiclassical approximation. Specifically, we use the relationship between the matrix
elements of an operator in the energy eigenbasis and the Fourier components of the particle’s
classical trajectory [4]. This relationship is derived from the WKB wavefunctions [4], and
is technically only valid for highly excited oscillator levels. Here, however, the semiclassical
result agrees exactly in the subsonic limit with the full quantum result, and differs only by
10% from that result in the supersonic limit.

3.3 Dissipative loading of Fermions

Controlled dissipation of energy into a reservoir gas, as discussed in chapter 5 is not simply
a method for cooling the motional states of atomic qubits, but instead has much broader
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potential applications in cooling and the introduction of controlled dissipation for atoms in
optical lattices. This fact is illustrated in chapter 6, where this dissipative process is used
as the key element in an irreversible loading scheme to prepare high fidelity initial states.
In contrast to the coherent filtering scheme in 4, this scheme is fault tolerant, and the state
being prepared always improves in time.

The basic element of this scheme is a cold reservoir of fermions, which plays a a dual
role as both a source for atoms to be loaded into the lattice via a Raman process, and
as a heat bath for sympathetic cooling of lattice atoms. We use the Raman transition to
couple atoms into an excited motional state in each lattice site, from where they decay to
the ground state whilst creating particle-hole pairs in the reservoir. These excitations are
analogous to the Bogoliubov excitations discussed for the Bose reservoir in the original cooling
scheme. Atoms transferred into the ground motional level are no longer coupled back to the
reservoir, and are effectively in a “dark state” with respect to the coupling laser. This scheme
thus has strong conceptual connections with optical pumping processes, in which atoms are
repeatedly transferred using a laser into excited electronic states, undergoing spontaneous
emission events and being re-excited until they reach the target “dark state”, where they are
no longer coupled by the laser.

This is discussed in detail in chapter 6, beginning with transfer of atoms from the reservoir
into the lattice via Raman processes. The decay of atoms due to interactions with the external
reservoir (in this case a Fermi gas) is then treated, as is the combination of these two parts
into the complete scheme.
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Defect-Suppressed Atomic Crystals in an Optical Lattice†
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We present a coherent filtering scheme which dramatically reduces the site occupation
number defects for atoms in an optical lattice, by transferring a chosen number of atoms
to a different internal state via adiabatic passage. With the addition of superlattices it
is possible to engineer states with a specific number of atoms per site (atomic crystals),
which are required for quantum computation and the realisation of models from condensed
matter physics, including doping and spatial patterns. The same techniques can be used
to measure two-body spatial correlation functions.

There has been a vast amount of recent interest in the study of Bose-Einstein Condensates
(BECs) [1] and degenerate Fermi gases [2] in optical lattices [3–5]. Such systems have many
potential applications in quantum computing, and also make possible the study of strongly
correlated systems from condensed matter theory with unprecedented control over system
parameters.

However, the study of strongly correlated systems or entangled atoms in optical lattices
requires not only that the corresponding (Hubbard) Hamiltonian [3, 4] be properly engineered,
but also that the system is placed in a well defined (pure) initial state with high precision.
Whilst is possible to load a BEC into an optical lattice in the Mott Insulator (MI) phase,
which corresponds to having a definite number of atoms at each lattice site [3, 4], non-ideal
conditions will always result in defects in that phase (i.e., missing atoms and overloaded

†The primary contribution of the author of the present thesis to this publication was the analysis of the
loading scheme for Fermions, together with the related measurement scheme and applications found in the
second half of the publication. He also acted as a discussion partner for the other aspects of this work.
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sites). The removal (or precise control) of such defects is then a necessary condition for
the application of atoms in optical lattices to quantum computing and the study of strongly
correlated systems. In this letter, we propose a coherent filtering scheme which, beginning
with an uncertain number of atoms in each site, provides a method to transfer a definite
number of atoms at each site into a different internal state, and so load a new lattice of
atoms with an exact number of particles per site. This process dramatically reduces the site
occupation number defects, and can be extended, under experimentally reasonable conditions,
to allow the production of doped or pattern loaded initial states with almost unit fidelity
(i.e., atomic crystals). The scheme is also applicable to the production of high fidelity initial
states in fermion systems (including doped states and the loading of composite objects), and
when combined with moving optical lattices, can be used to measure two-body correlation
functions. We illustrate this by presenting an example of how this scheme could be used
to both produce and characterise superconducting states in an optical lattice with a chosen
filling factor.

We begin by considering a system of bosons loaded into an optical lattice such that they
do not tunnel between neighbouring sites. The atoms are in a particular internal state, |a〉,
and have onsite interaction strength (with ~ = kB = 1) Ua = 4πas

∫

d3x|w(x)|4/m, (valid
for Ua less than the separation of the two lowest motional states at each site) where as is
the scattering length and w(x) is a Wannier function [3]. We then couple the atoms into a
second internal state, |b〉, (which is trapped by a second lattice potential) via an off-resonant
Raman transition with Rabi frequency Ω(t), which is detuned from state |b〉 by δ(t). If we
denote the onsite interaction between particles in state |b〉 as Ub and the onsite interaction
between particles in different internal states as Uab, and follow the derivation in [3], we obtain
the Hamiltonian

Ĥ =
Ua

2
n̂a(n̂a − 1) +

Ub

2
n̂b(n̂b − 1) + Uabn̂an̂b

−Ω(t)

2
(a†b+ b†a) − δ(t)n̂b, (4.1)

where â and b̂ are the annihilation operators for particles in states |a〉 and |b〉 respectively,
and n̂a = â†â, n̂b = b̂†b̂. We can then write the state of the site as |na, nb〉, where na and
nb are the number of particles in the internal states |a〉 and |b〉 respectively. We know that
the initial state at a particular lattice site is |N, 0〉, where N ∈ 1, 2, . . . , Nmax. Our goal is to
transfer exactly one particle from state |a〉 to state |b〉, so that for any N , the final state is
|N − 1, 1〉. In order to do this we must choose the initial and final values of the detunings,
δi and δf so that the system evolves along the avoided crossing in the energy eigenvalues,
undergoing an adiabatic passage from |N, 0〉 → |N − 1, 1〉, and does not evolve along any
other such avoided crossings. These values have to be simultaneously chosen for all values of
N , as shown in Fig. 4.1. Once the system is in state |N − 1, 1〉, we can turn off the lattice
trapping state |a〉, leaving a pure state with exactly one atom per lattice site.

The relative locations of the avoided crossings in the energy eigenvalues are determined
by the values of Ua/Ub and Uab/Ub. In the adiabatic limit (δ̇ → 0), we can set Ω = 0, and for
a given Nmax it is then straight forward to find the parameter range for which an appropriate
choice of δi and δf is possible. We consider the locations at which the energy eigenvalues of Ĥ
cross in this limit, and then attempt to find a parameter range for which the crossings between
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Figure 4.1. Plots showing avoided crossings in the energy eigenvalues for N =
1, 2, 3 (Note the vertical scale variation). We must choose δi and δf (dashed
vertical lines) so that we cross only from |N, 0〉 → |N − 1, 1〉, as illustrated in
the inset.

|N, 0〉 and |N−1, 1〉 for all N fall within a range of detunings [δi, δf ] which isolates them from
all other crossings. The resulting boundaries for the allowed parameter space are given by
Uab = (1 − ki)Ua + kiUb, for i = 1, 2, where for Uab > Ua, k1 = 1/Nmax, k2 = 1/(2Nmax − 4),
and for Uab < Ua, k1 = 1/(2Nmax − 2), k2 = 1/(Nmax − 3). These boundaries are shown in
Fig. 4.2a for Nmax = 4. Larger values of Nmax result in a more restrictive allowed parameter
range. Substantially different values of Ua and Ub are required, which is possible using either
spin-dependent lattices [5], where Ua and Ub are independently controlled via the different
lattice shape for atoms in each internal state, or Feshbach Resonances [6], near which the
scattering length as is different for atoms in different internal states as we tune an external
magnetic field. Uab can also be independently controlled by slightly displacing the lattices
trapping internal states |a〉 and |b〉.

In the case of finite-time laser pulses, the adiabatic crossings have a finite size, and
must be crossed on a timescale dictated by the separation of the energy eigenvalues at the
crossings. From the Landau-Zener formula, we can estimate the transfer error ε for each
N , when

√
NΩ(t) ≪ Ua, Ub, as εN ≈ exp[−πNΩ2/(2δ̇)], where δ̇ ∼ |δf − δi|/τ and τ is the

total transfer time. Numerical calculations of εN are shown in Figs. 4.2b, 4.2c, and predict
values of the order of 10−4 for typical τ ∼ 100/Ub, which could be significantly improved
upon by coherent control optimisation of Ω(t) and δ̇(t). This analysis is valid for τ values
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well within the decoherence time (including spontaneous emissions, collisional losses, and
external parameter fluctuations, [4]) of the optical lattice.
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Figure 4.2. (a) The parameter range for which appropriate values of δi and
δf can be found when Nmax = 4, in the adiabatic limit (light shading) and
from numerical simulations with a smoothed rectangular pulse which rises and
falls with a sin2(t/τ) shape, τ = 100/Ub and max Ω = 0.3Ub, giving a transfer
error ε < 1% (dark shading). (b) Transfer errors εN as a function of Ω for
Ua = Uab = 0.2Ub and τ = 200/Ub (The dashed lines show the corresponding
results from the Landau-Zener formula). (c) Maximum transfer errors from
N = 1, 2, 3 as a function of τ for example values of Ua and Uab (parameters
are shown in units of Ub). (d) Initial and final state fidelities, Fa and Fb, as a
function of temperature, T , for an initial MI state described at each site using
the GCE. The inset shows values of 1 −Fa (solid line) and 1 −Fb for Na = 2
(dashed) and Na = 3 (dotted) on a logarithmic scale.

This filtering scheme naturally cannot correct occupation number defects in which no
atoms are present at particular lattice site in state |a〉. Because in principle extremely low
transfer errors, ε, are obtainable, this is the fundamental limit for the filtering scheme. The
initial single-site fidelity of a state where we choose to have Na particles in each lattice site
is defined as Fa = 〈Na, 0|ŵ0|Na, 0〉, where ŵ0 is the initial density operator for the site.
Similarly, the final state single-site fidelity (for 1 transferred atom) is Fb = 〈1|ŵb|1〉, where
ŵb = Traŵ, and ŵ is the final density operator for the site. In each case the overall fidelity
for M sites is given by FM = FM . If the probability of zero occupation in a particular site
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is p0, then Fb = (1 − ε)(1 − p0). Thus to obtain the highest possible fidelities we should
start in a MI phase with an average filling factor of 2 or more particles per site, where p0 is
small. For such a MI phase, with an average filling factor of Na at temperature T , we model
the particle number fluctuations using a Grand Canonical Ensemble (GCE). For integer Na

and low initial temperature, exp[−Ua/(2T )] ≪ 1, we obtain p0 = exp[−UaN
2
a/(2T )], so

that for ε → 0, Fb ≈ (1 − exp[−UaN
2
a/(2T )]). Under the same conditions, we can write

Fa = p(N = Na) ≈ 1− 2 exp[−Ua/(2T )]. We see (Fig. 4.2d) that coherent filtering increases
the fidelity by several orders of magnitude, even when the fidelity Fa is already reasonably

high. Moreover, as (1 − Fb) = [(1 − Fa)/2]N
2
a , we see that the error in the initial state is

exponentially suppressed with exponent N
2
a. For example, if we assume ε → 0, an initial

state with Na = 2 and a defect at every tenth lattice site, Fa = 0.9, T/Ua = 0.17, results in
a final state with 1 −Fb ≈ 3 × 10−6, i.e., less than one defect every three hundred thousand
sites. In an attempt to reduce number fluctuations even further we also considered a regime
in which the atoms were allowed to move between neighbouring sites during the filtering
process. However, for a fixed mean filling factor and transfer time this produces a lower final
state fidelity than performing the filtering in the MI regime.

Taking Poisson statistics instead of the GCE, which corresponds to the BEC being loaded
by suddenly switching on the lattice (this can be seen by computing the reduced density
operator of the original superfluid state), and assuming a perfect transfer (ε = 0), we obtain
Fb = 1 − exp(−Na). Thus, to achieve high fidelities F > 0.99 in the final state requires
N̄a ∼ 5. Such Na values might ultimately be limited by the increase in 3-body collisional
losses with many atoms on each site.

This filtering can clearly be extended to transfer multiple atoms into state |b〉 by choosing
δf so that the system evolves along more than one avoided crossing (but the same number for
all initialN). Similarly, it is possible to choose δi and δf so that the transfer |N, 0〉 → |N−1, 1〉
occurs only for initial states with a particular value of N . Thus, we can measure the defects
in the initial state, for example by mapping sites with Na = Na + 1 or N = Na − 1 atoms
onto occupied sites in state |b〉.

Spatial patterns can be created by adding a superlattice to the lattice trapping atoms in
state |b〉, site-dependently shifting the energy level of |b〉 and preventing atoms in particular
sites from coupling to the Raman transition. This allows the engineering of many high-fidelity
spatial states because of the wide range of possible superlattice configurations which can be
formed using overlapping laser beams.

Coherent filtering can also be applied to a degenerate Fermi gas [2, 7] in an optical lattice
(Fig. 4.3a). We consider spin up and spin down fermions (in states |a ↑, ↓〉) loaded into the
motional levels of each lattice site according to the Pauli principle. Atoms in any chosen mo-
tional level (normally the lowest, as for low temperature and high filling factors it will almost
always be occupied) may then be transferred by adiabatic passage to a different internal state,
|b ↑, ↓〉. An example of appropriate states can be taken from the 2S1/2 level of 6Li in a strong

magnetic field (i.e., in the Paschen-Back regime). We choose |a ↑, ↓〉 = |ms = 1
2 ; mI = 0,−1〉

and |b ↑, ↓〉 = |ms = −1
2 ; mI = 1, 0〉, where ms and mI denote the magnetic spin quantum

number for the electronic and nuclear spins respectively. (Where required, spin-dependent
lattices for these states could be implemented for the short times required by coupling the
ground states between the 2P1/2 and 2P3/2 levels.) As was the case for Bosons, we can apply
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a superlattice to the lattice which traps state |b〉, and hence engineer very high fidelity spatial
patterns (Fig. 4.3b). By applying different superlattices during the transfer of different spin
states, the ratio of spin up to spin down particles in the final state can also be very precisely
controlled.
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Figure 4.3. The production of (c) a BCS state at exactly half filling in an
optical lattice from (a) a degenerate Fermi gas using pattern loading techniques
described in the text (a→b). The 3D Plots show the pair correlation function
ρi,j,0, illustrating the crossover from (d) localized pairs [V = 10J , U = −10J ,
MI Regime (b)] to (e) delocalised pairs [V = 0, U = −0.1J , BCS regime (c)].
Information about these correlations can be obtained from γl =

∑

i ρi−l,i+l.
These results are from numerical diagonalisation of (4.2) for 8 sites and half
filling with periodic boundary conditions.

These techniques, when combined with the ability to move spin-dependent optical lattices
[5], can be used to measure two body correlation functions. Currently, sinlge-body correlation
functions can be studied using the interference patterns produced when atoms are released
from the lattice, and many-body correlation functions for a single site can be estimated from
collisional loss rates. However, for fermion systems in a lattice, fourth order correlation
functions of the form ρi,j,l = 〈ĉ†i+l↑ĉ

†
i−l↓ĉj−l↓ĉj+l↑〉 (where ciσ is the annhilation operator for

an atom of spin σ in site i) are of particular interest because they provide information about
both about the long range order and the pair correlation length in the system. Specifically,
κl =

∑

i〈ĉ
†
i+l↑ĉ

†
i−l↓ĉi−l↓ĉi+l↑〉 characterises the correlation as a function of the separation

2l between spin up and spin down particles, and γk =
∑

i〈ĉ
†
i−k↑ĉ

†
i−k↓ĉi+k↓ĉi+k↑〉 gives us

information about the long range order as a function of the separation 2k between the pairs.
These two functions can be measured by firstly making the lattice potential very deep, and
performing the measurement on a timescale shorter than that on which atoms can move to
neighbouring sites. Then, to measure κl, we first transfer all of the spin down atoms from
their current state, |b ↓〉 via an adiabatic passage to the internal state |a ↓〉. We then shift the
lattice trapping the state |a ↓〉 2l sites to the left. If we now transfer the particles in state |a ↓〉
to state |b ↓〉 selectively, based on the condition that no particle exists (at a particular site) in
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the state |b ↑〉, then the number of atoms left in state |a ↓〉 is proportional to the value of κl.
This is made possible by the onsite interaction between particles with different spins shifting
the detunings at which avoided crossings occur in the energy eigenvalues. A similar process
can be used to measure γl, but requires an additional step in which we flip the spin of particles
in state |b ↓〉 → |b ↑〉. Whilst these processes would be difficult to implement experimentally,
they can be seen as providing an eventual way to perform a complete tomography of pair
correlations in fermion systems.
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Figure 4.4. Numerical values of κl, which describes the pair correlation length.
These results are examples from numerical diagonalisation of (4.2) for 40 sites
and 1 particle of each spin type and 16 sites and 2 particles of each spin type
(inset) with a) V = 0, U = −10J and b) V = 0, U = −0.1J .

Such a characterisation would be particularly useful in the study of the BEC - BCS
crossover in an optical lattice [8]. Along with initial state preparation, this is well illustrated
by the method to study the MI to BCS state transition in fermions at exactly half-filling
shown in Fig. 4.3. We begin by transferring particles of both spin types from a degenerate
Fermi gas loaded into an optical lattice (Fig. 4.3a) via adiabatic passage to a different
internal state, whilst a superlattice is used to offset even-numbered sites in the final state by
a potential V (Fig. 4.3b). This system is then described by the Hamiltonian

Ĥ = −J
∑

〈i,j〉,σ
ĉ†iσ ĉjσ + U

N
∑

i=1

n̂i↑n̂i↓ +
V

2

N
∑

i,σ

(−1)in̂i,σ, (4.2)

where 〈i, j〉 denotes all nearest neighbour combinations and n̂i,σ = ĉ†i,σ ĉi,σ. U denotes the
onsite interaction between particles of different spin, which we choose to make initially large
and negative, using a combination of lattice parameters, and, if necessary, a Feshbach res-
onance [7]. Thus we prepare a state with exactly half-filling (note that other filling factors
are possible with different superlattices), consisting of pre-formed pairs in the odd numbered
sites (Fig. 4.3b, 4.3d). We slowly decrease V to a small value, V < J ≪ U , allowing the
pairs to delocalise. For small V but large |U |, the pairs behave as a gas of hard-core Bosons.
Following the discussion in [9], we find that the system is protected throughout this process
by an energy gap of V . This resulting state is characterised by a very short inter-particle
correlation length, measureable through the correlation function κl (Fig. 4.4a).
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We then lower the onsite interaction until |U | < J , so that the spin up and spin down
particles can move independently. A meanfield treatment [10] shows that even in the weak
coupling limit the state is protected by an energy gap which is no less than V . Once the BCS
state of Cooper pairs sets in [8], we can set V → 0 by completely removing the superlattice.
The system thus undergoes a transition into a BCS state (Fig. 4.3c, 4.3e), characterised by
its long pair correlation length, again measureable using κl (Fig. 4.4b).

In summary, the coherent filtering scheme presented here allows the production of high-
fidelity atomic crystals, and the measurement of important correlation functions. These
features will greatly enhance the application of atoms in optical lattices to quantum compu-
tation and to the precise modeling of condensed matter systems.

We thank D. Jaksch, L. Tian, M. Bijlsma, and members of R. Grimm’s group for discus-
sions. Work was supported in part by the Austrian Science Foundation, E.U. Networks, and
the Institute for Quantum Information.
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Single Atom Cooling by Superfluid Immersion:
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We present a scheme to cool the motional state of neutral atoms confined in sites
of an optical lattice by immersing the system in a superfluid. The motion of the atoms
is damped by the generation of excitations in the superfluid, and under appropriate
conditions the internal state of the atom remains unchanged. This scheme can thus
be used to cool atoms used to encode a series of entangled qubits non-destructively.
Within realisable parameter ranges, the rate of cooling to the ground state is found to be
sufficiently large to be useful in experiments.

5.1 Introduction

Neutral atoms are one of the most promising candidates as carriers for the storage and
manipulation of quantum information [1]. Qubits may be stored in long-lived internal atomic
states with very low levels of decoherence, and may be manipulated using interactions between
the atoms and external devices (such as lasers) or interactions amongst the atoms themselves.

An experimental prerequisite for this is the development of techniques to trap single
atoms, and there has been much progress over the last five years both in optical traps [2, 3]
and in magnetic microtraps [4]. In addition, specific implementation of quantum computing
usually requires cooling of atoms to the vibrational ground state of the trap, or at least to
the Lamb-Dicke limit. Many techniques have been developed including the widespread use
of laser cooling [5].

†The author of the present thesis performed all of the calculations in this publication, except those of the
dispersion relation for a foreign particle in a superfluid found in Appendix A.
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One of the most promising routes to quantum computation with neutral atoms is the use
Bose Einstein Condensates (BECs) [6] loaded in optical lattices [7, 8], a system which has
been realised in part in a number of recent experiments [3, 9–11]. There are several theoretical
proposals for the implementation of quantum logic gates in such systems [12–16], and the
first steps towards the fundamental experimental techniques required for some of these have
been recently realised. For example, the recent demonstration of spin-dependent transport
in an optical lattice [9] makes possible the implementation of a fundamental quantum phase
gate by cold controlled collisions [12] in which qubits are encoded using two different internal
states of the atoms in the optical lattice.

However, most of these proposals require the transport of qubits, which is usually asso-
ciated with heating of the atomic motion [9]. A question then arises as to how that motion
may be cooled back to the ground state without changing the internal state of the atoms, and
thus destroying the qubits or their entanglement. Laser cooling, for example, is clearly not
applicable here as the process of light scattering causes decoherence. The same problem arises
in scalable ion trap quantum computing, and there it has been overcome using sympathetic
cooling schemes, in which ions used to encode qubits are cooled via a coulomb interaction
with either a single ion which is directly laser-cooled [17] or another species of ions which
are directly laser-cooled [18]. In a different context, sympathetic cooling schemes are also
widely used in the field of cold quantum gases, where they have been used to cool different
spin states of the same atomic species [19], to cool different Bosonic species [20], and to cool
Fermi gases brought into contact with a BEC [21].

In this article we consider the sympathetic cooling of a single atom in a harmonic trap
in contact with a superfluid. This is readily expanded to the case of many harmonic traps,
which is a good approximation for an optical lattice without tunneling. The motion of the
atom is damped by the generation of excitations in the superfluid, and the resulting cooling
rates are sufficiently large to be useful experimentally. In addition, decoherence of a qubit
encoded on the atoms can be eliminated in this scheme provided that the internal atomic
states used to encode the qubit are chosen carefully in order to satisfy particular collisional
requirements.

5.2 Overview

In this section we give a short summary of the most important results contained in this
article. Derivations and further discussions of these results follow in the remaining sections.

Our goal is to cool a single trapped atom representing a qubit |0〉, |1〉 without destroying
the superposition state of the qubit (or the entangled state in case of many atoms). Cooling
of the atom is achieved by sympathetic cooling, immersing the atom in a superfluid, which
plays the role of a very cold reservoir. By a proper encoding of the qubit in internal atomic
states, and choice of the atomic level for the superfluid reservoir (see section 5.3.1) we can
ensure that (i) the qubit is not destroyed by opening collisional channels to unwanted final
states, and (ii) the |0〉 and |1〉 states have identical collisional properties with respect to
the collisional interactions with the superfluid, and thus the collisions do not randomise the
relative phases of the qubit.
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Cooling is considered within a model in which the atoms are treated as being trapped
in independent 1D Harmonic oscillator potentials with trapping frequency ω, and interact
with the superfluid via a density-density interaction, generating excitations in the superfluid,
which are modeled as Bogoliubov excitations in a weakly interacting Bose gas (section 5.3)
and have momentum ~q and energy εq. In discussing this cooling process we can restrict
ourselves to a single component of the qubit |0〉 (or |1〉). Justification for the use of a density-
density interaction is provided in appendix 5.A, where the dispersion relation for a free foreign
particle interacting with a superfluid is derived.

A master equation is derived for the density operator of this system (section 5.3.3 and
appendix 5.B), from which the time evolution of the probability pn that the atom is in the
nth motional state of the Harmonic oscillator potential is shown to be

ṗm =
∑

n>m

Fn→mpn −
∑

n′<m

Fm→n′pm +
∑

n

Hn,m(pn − pm). (5.1)

The terms with coefficient Fn→m,

Fn→m =
2π

~

∑

q

|Zn,m(q)|2δ(~ω(n−m) − εq), (5.2)

where Zn,m are the matrix elements of the interaction Hamiltonian in the basis of Harmonic
oscillator energy eigenstates (Fock states), describe the transitions from state n to state m
due to generation of excitations in the superfluid, and the terms with coefficient Hn,m,

Hm,n =
2π

~

∑

q

N(q)|Zn,m(q)|2δ(~ω|n−m| − εq), (5.3)

describe the transitions between state n and state m due to interactions with thermal exci-
tations at finite temperatures. This is illustrated in Fig. 5.1.

If the speed of sound in the superfluid is u, and the mass of superfluid atoms is mb,
then the behaviour of the cooling process can be separated into two regimes - where the
motion of the oscillating atom is subsonic (~ω ≪ mbu

2/2) or supersonic (~ω ≫ mbu
2/2). In

the supersonic regime, cooling from any excited oscillator state occurs directly to all lower
energy states, including a significant transition rate directly to the ground state (section
5.4.1). The resulting rate of energy loss ε̇(n) for a particle in the nth oscillator state is not
linear in n, but instead (for lattice and superfluid atoms of equal mass m) is found to be

ε̇(n) ≈ −g
2
abρ0m

3/2

π~4
√

2
α[ε(n)]3/2, (5.4)

where gab is the coupling constant for interactions between the atoms in the lattice and the
superfluid, ρ0 is the condensate density, ε(n) = ~ωn, and α ∼ 0.3 is a constant.

If we consider the slowest transition rate, that from the first excited state to the ground
state, we find that the characteristic transition time, τ , is given by

ωτ1→0

2π
∼ 1.2 × 10−2 × 1

ρ0a3
ab

aab

l0
, (5.5)
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Figure 5.1. The motion of an atom in a harmonic trap immersed in a super-
fluid is cooled by the generation of excitations in the superfluid. Terms in the
equations of motion with coefficients Fn→m describe transitions from oscillator
state |n〉 to state |m〉 by creation of excitations, whilst finite temperature con-
tributions with coefficients Hn,m account for the interaction of the system with
thermal excitations.

where aab is the scattering length for the interaction between atoms in the lattice and the
superfluid, and l0 =

√

~/(mω) is the size of the harmonic oscillator ground state. Thus, as
l0 is typically an order of magnitude larger than aab, and ρ0a

3
ab ∼ 10−4, τ is of the order of

10 oscillator cycles. This is a sufficiently rapid cooling rate to be useful experimentally.

In the subsonic regime, damping still occurs because the oscillatory motion of the atom
is accelerated (section 5.4.2). Significant rates are found only for transitions between neigh-
bouring oscillator levels, and ε̇(n) is found to be linear in n,

ε̇(n) ≈ − g2
abρ0ω

4

12πmambu7
ε(n). (5.6)

When the superfluid is at a finite superfluid temperature T , the system is cooled to the
temperature T of the superfluid. The final distribution of occupation probabilities is shown
to be a Boltzmann distribution,

p̄n = p̄0e
−n~ω/(kBT ) =

(

1 − e−~ω/(kBT )
)

e−n~ω/(kBT ), (5.7)

where kB is the Boltzmann constant (section 5.4.3). If the temperature corresponds to an
energy much smaller than the Harmonic oscillator spacing, kBT ≪ ~ω, then the population
in excited motional states is negligible. For example, if ω ∼ 2π × 105s−1, ~ω/kB ∼ 5µK, so
that for T = 500nK, we then obtain 1 − p̄0 ≈ 5 × 10−5.

The situation in which the collisional interaction between atoms in the lattice and super-
fluid atoms are not identical for the two qubit states |0〉 and |1〉 is considered in section 5.5.
If the scattering lengths for interactions between atoms in the qubit states and atoms in the
superfluid, aab is expressed as a0 and a1 for atoms from each of the two qubit states, then the
rate of decoherence is found to be proportional to (a1 − a0)

2. This rate is also proportional
to the transition rate between motional states, except for an “initial slip” in the decoherence
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(also proportional to (a1−a0)
2) which occurs on the timescale of approximately one oscillator

cycle.

A semiclassical treatment of this system in the WKB approximation (section 5.6) gives
a result for the supersonic case which is different from the full quantum result by only 12%.
A similar treatment in the strongly subsonic regime gives exact agreement with the earlier
result.

In section 5.7 we investigate a somewhat different model for the excitations, in the con-
text of a quasi-1D superfluid. The resulting damping rates are found to be small except in
the regime where the superfluid is very strongly interacting, which is a difficult regime to
obtain experimentally. Finally, appendix 5.C contains semiclassical estimates for small addi-
tional damping terms which arise at finite temperatures and have been neglected in earlier
calculations.

5.3 The Model

5.3.1 Avoiding Decoherence

The total Hamiltonian of the cooling process for a single atom can be written as

Ĥtot = Ĥqubit + Ĥmotion + Ĥsuperfluid + Ĥint, (5.8)

where Ĥqubit is the Hamiltonian for the internal states of the atom, denoted |0〉 and |1〉, on

which the qubit is encoded, Ĥmotion is the Hamiltonian for the atomic motion of the atom
which is to be cooled, Ĥsuperfluid is the Hamiltonian for the superfluid, and Ĥint describes
the interaction between the atom and the superfluid. In order to cool a qubit without
decoherence, the internal state of the atom being cooled should remain unchanged during the
cooling process. If we write the initial internal state of an atom in a particular lattice site as
|ψ〉, and the combined density operator for the initial mixed motional state of the atom and
the state of the superfluid as R̂(0), so that the total initial density operator is |ψ〉〈ψ| ⊗ R̂(0),
then the overall Hamiltonian for the cooling process, Ĥtot, must satisfy

e−iĤtott/~|ψ〉〈ψ| ⊗ R̂(0)eiĤtott/~ = |ψ〉〈ψ| ⊗ R̂(t). (5.9)

Thus Ĥtot must be of the form Ĥtot = (|0〉〈0| + |1〉〈1|) ⊗ Ĥ. This requirement is satisfied
provided that the interaction Hamiltonian, Ĥint is independent of the internal state of the
atom in the lattice. Thus, the trap potential must be the same for the two internal states
|0〉 and |1〉, and the scattering length aab between atoms in the superfluid and atoms in the
lattice [22] must also be the same for the two internal states. The identical scattering lengths
can be arranged by choosing symmetric spin configurations, for example, by choosing |0〉
and |1〉 to be internal states with angular momentum quantum number F = 1 and magnetic
quantum numbers mF = ±1, and the superfluid atoms to be in an internal state with F = 1
and mF = 0. In order to make such a configuration stable against spin-exchanging collisions
[23], these states should all be in the ground state of the manifold, and to prevent the creation
of pairs of lattice atoms from superfluid atoms [24], the energy of the mF = 0 level should
be lowered with respect to the mF = ±1 states (for example by using a laser [25]).
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We must also ensure that when we have N qubits (N > 1), the entanglement between
them is not destroyed when the motion of one or more of them is cooled. The condition
in Eq. (5.9) is once again sufficient for the suppression of decoherence, but now |ψ〉 is the
total internal state of the N -qubit system, and Ŵ is the total combined density operator for
the motional state of each qubit and the state of the environment. Physically, the condition
is now modified so that the interaction between any atom and the superfluid must be both
independent of the internal state of that atom, and independent of the internal state of all
other atoms. Because the interaction is a density-density interaction, this second requirement
is always fulfilled. Note that when the correlation length of the superfluid is shorter than the
separation between atoms, it is possible for the motional state of different atoms to become
entangled. However, this will not affect the state of the N -qubit system, as the qubits
are encoded solely on the internal states of the atoms, which remain at all times separable
from the motional states. The situation in which the states used to encode the qubit are
not appropriately chosen to ensure symmetry in the collisional interactions is considered in
section 5.5.

5.3.2 Hamiltonian for the Oscillator-Superfluid Interaction

After imposing the requirement from the preceding section, we consider only the motional
degrees of freedom of the atoms in the optical lattice, which are assumed to be confined in
particular lattice sites where the motional states can be approximated as those of an harmonic
oscillator. Coupling to the superfluid occurs in the form of a density-density interaction that
generates excitations in the superfluid, which we model as Bogoliubov excitations in a weakly
interacting Bose gas [26]. The Hamiltonian for the combined system of an atom in a lattice
site and the superfluid (for the motional atomic degrees of freedom only) is given by

Ĥ = Ĥmotion + Ĥsuperfluid + Ĥint, (5.10)

where Ĥmotion is a 3D harmonic oscillator Hamiltonian with frequency ω, which describes the
motional state of the atom, Ĥsuperfluid is the Hamiltonian for the superfluid excitations, and

Ĥint is the interaction Hamiltonian.

Ĥsuperfluid = E0 +
∑

q 6=0

ε(q) b̂†qb̂q, (5.11)

where b̂†q and b̂q are creation and annihilation operators for Bogoliubov excitations in the
superfluid with momentum ~q and energy ε(q), and E0 is the ground state energy of the
superfluid.

Ĥint = gab

∫

δρ̂(r) δρ̂atom(r)d3r

= gab

∫

δρ̂(r) δ(r − r̂)d3r = gabδρ̂(r̂), (5.12)

where δρ̂atom is the density operator for the motion of the atom, r̂ is the position operator
for the atomic motional states, δρ̂ is the density fluctuation operator in the superfluid, and
gab = 4π~

2aab/(2µ) is the coupling constant for the interaction, with aab the scattering
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length for interactions between superfluid atoms and atoms in the lattice [22], and µ =
(mamb)/(ma +mb) the reduced mass of an atom in the lattice with mass ma and a superfluid
atom with mass mb. The density fluctuation operator may be expressed as δρ̂ = Ψ̂†Ψ̂ − ρ0

where Ψ̂ =
√
ρ0 + δΨ̂ is the second quantised field operator for the superfluid and ρ0 is the

mean condensate density. In terms of the creation and annihilation operators for Bogoliubov
excitations, we can write

δΨ̂ =
1√
V

∑

q

(

uqb̂qeiq.r + vqb̂
†
qe−iq.r

)

, (5.13)

where V is the normalisation volume,

uq =
Lq

√

1 − L2
q

, vq =
1

√

1 − L2
q

, (5.14)

and

Lq =
εq − (~q)2/(2m) −mu2

mu2
. (5.15)

The energy of excitations with momentum ~q is

εq = [u2(~q)2 + (~q)4/(2mb)
2]1/2, (5.16)

and the speed of sound can be expressed as, u =
√

gbbρ0/mb, where gbb = 4π~abb/mb with
abb the scattering length for interactions between atoms in the superfluid [26]. In a weakly
interacting Bose gas at sufficiently low temperatures (where the condensate density is much
smaller than the density of the normal component), the term from δΨ̂†δΨ̂ may be neglected
(see appendix 5.C). In this case we can write

δρ̂ =

√

ρ0

V

∑

q

(

(uq + vq)b̂qeiq.r + (uq + vq)b̂†qe−iq.r
)

. (5.17)

For the motion of atoms in the lattice, we make the approximation that the damping of
in each dimension can be can be considered independently, and thus we treat the atom as a
1D oscillator with frequency ω, i.e.,

Ĥatom = ~ω

(

â†â+
1

2

)

, (5.18)

where â is the lowering operator for the motional state of the atom. The position operator
for the 1D oscillator is x̂ =

√

~/(2maω)(â + â†), where ma is the mass of the atoms in the
lattice. We can also write q.r̂ → qxx̂, where qx is the component of q in the direction of the
oscillator motion.

5.3.3 Damping Equations

In deriving equations for the damping of the system we assume that the cooling rate is
significantly slower than the period of the oscillator, and we treat the BEC as a reservoir in
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which the correlation time is much shorter than the correlation time of atoms in the lattice.
Under these assumptions, the master equation for reduced density operator describing the
motional state of an atom in the lattice, ŵ(t) = TrR[Ŵ (t)], where TrR denotes the trace over
the superfluid states, is derived in Appendix 5.B.

We define the projection operator, P̂, onto a basis diagonal in the oscillator Fock states
|m〉 (Hmotion|m〉 = ~ω(m+ 1/2)|m〉) as

P̂X̂ =
∑

m

|m〉〈m| 〈m|X̂|m〉, , (5.19)

so that
P̂ŵ(t) =

∑

m

|m〉〈m|pm. (5.20)

Because we assumed that the oscillator trap frequency ω ≫ τ−1, where τ is the characteristic
timescale on which transitions take place due to interaction with the superfluid, the coupling
to off-diagonal elements of ŵ(t) in the Fock state basis is very small, and the state occupation
probabilities pn satisfy a closed set of equations. From appendix 5.B we then see that

ṗm =
∑

n>m

Fn→mpn −
∑

n′<m

Fm→n′pm +
∑

n

Hn,m(pn − pm). (5.21)

Here Fn→m is the damping coefficient at zero temperature for transitions from state n
to state m, and Hn,m are the coefficients of the finite temperature corrections due to the
absorption and scattering of thermal excitations. The zero temperature damping coefficients
are are

Fn→m =
2π

~

∑

q

|Zn,m(q)|2δ(~ω(n−m) − εq), (5.22)

and the

system matrix elements of the interaction Hamiltonian are given by

Zn,m(q) = 〈m|Ĥint|n〉 = (uq + vq)gab

√

ρ0

V
〈m|e−iqxx̂|n〉. (5.23)

Note that (5.22) is Fermi’s Golden rule for the transition from state |m〉 to state |n〉 via inter-
action with density fluctuations in the superfluid, and that the restrictions on the summation
in (5.21) are written for clarity, but actually result from the delta function in (5.22), due to
which Fn→m is only nonzero when n > m.

The finite temperature corrections are given by

Hm,n =
2π

~

∑

q

N(q)|Zn,m(q)|2δ(~ω|n−m| − εq), (5.24)

where N(p) = (exp[εp/(kBT )]− 1)−1 is the mean number of thermal Bogoliubov excitations
with momentum ~p present in the superfluid, with T being the temperature in the normal
component of the gas and kB the Boltzmann constant. Because we are interested in cooling
the system to its ground state, we assume that the temperature of the superfluid is small,
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kBT ≪ ~ω. This is very realistic experimentally, and in this regime we can make the
approximation Hn,m ≈ 0. The consequences of these terms are described in section 5.4.3.

Also note that in the derivation of these equations we assume that the terms in δρ̂ arising
from δΨ̂δΨ̂† may be neglected. This approximation holds when the temperature is much
smaller than the critical temperature, so that the condensate density, ρ0, is much larger
than the density of the thermal component. The contribution from these terms at finite
temperatures is estimated in appendix 5.C.

From the transition rates, the energy dissipation rate of an oscillator in the state |n〉 can
then be calculated as

ε̇(n) =
∑

m

~ω(n−m)Hm,n −
∑

m<n

~ω(n−m)Fn→m. (5.25)

The total energy dissipation rate for an atom in a mixed state can be written as ε̇ =
∑

n ~ωnṗn, which in terms of (5.25) is given by ε̇ =
∑

n ε̇(n)pn.

5.3.4 Supersonic and Subsonic Motion Regimes

We note that for typical experimental parameters in the lattice and the BEC, ~ω ≫ mbu
2/2.

For example, a Rubidium BEC with density ρ0 ∼ 1014 cm−3 and scattering length abb ∼
100a0, where a0 is the Bohr Radius, has mbu

2/(2~) = 2π × 3.7 × 102 s−1, whilst typically
for an atom trapped in an optical lattice, ω ∼ 2π × 105 s−1. Thus, as the maximum velocity
of the atom may be estimated as

√

2~ω/ma, we see that for a typical experimental system
and ma ∼ mb, the atom velocities are supersonic. In this strongly supersonic regime the
requirements of energy conservation in (5.22) mean that even for a transition between states
where m and n differ only by 1, the excitations are in the particle branch of the Bogoliubov
excitation spectrum. In this regime, the momentum of excitations generated in the superfluid
~q ≫ mbu as ~

2q2/(2mb) ≥ ~ω ≫ mbu
2/2. Hence, εq ≈ ~

2q2/(2mb), and |uq + vq|2 ≈ 1.

If the superfluid was made sufficiently dense or strongly interacting, or the oscillator
frequency ω was made sufficiently small that the motion of the oscillating atom was subsonic
for all oscillator states which are initially excited, then energy conservation would cause the
excitations to be in the phonon branch of the spectrum. In this regime, the momentum
of excitations generated in the superfluid ~q ≪ mbu, so that εq ≈ ~uq, and |uq + vq|2 ≈
~k/(2mbu).

Note that the coefficients uq and vq can be related to the dynamic structure factor S(k, ω̃)
of the superfluid which is often used in relevant literature [27]. In terms of the symbols used
here, S(k, ω̃) = |uk + vk|2. In the same way as previously discussed, S(k, ω̃) ≈ 1 for large
values of k ≫ mbu/~, whilst for small k, S(k, ω̃) ∝ k.

In the following, we treat both the supersonic and subsonic regimes. As discussed previ-
ously, the supersonic regime is the more relevant of the two in current experiments. However,
the subsonic regime could be specifically engineered in experiments, and provides an inter-
esting comparison in terms of the physics of the damping mechanism.
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5.4 Results

The matrix elements in (5.23) can be expressed in the position representation as

〈m|e−iqxx̂|n〉 =

∫ ∞

−∞
e−iqxxψ∗

n(x)ψm(x)dx, (5.26)

where l0 =
√

~/(maω) is the oscillator length, qx is the component of q in the direction of the

oscillator, ψn(x) = e−x2/(2l20)Hn(x/l0)/
√

l02nn!
√
π is the position wavefunction for the state

|n〉, and Hn(x) is a Hermite Polynomial. Using the identity
∫∞
−∞ dxe−(x−y)2Hm(x)Hn(x)dx =

2n√πm! yn−mLn−m
m (−2y2), which assumes m ≤ n, we can express the matrix elements (for

m < n) as

〈m|e−iqxx̂|n〉 =

√

m!

n!
e−l20q2

x/4

(−il0qx√
2

)n−m

Ln−m
m

(

l20q
2
x

2

)

, (5.27)

so that

Fn→m =
g2
abρ0

2π~

m!

n!

∫ ∞

0
q2dqδ(~ω(n−m) − εq)

√
2

l0q
|uq + vq|2

×
∫ l0q/

√
2

−l0q/
√

2
dξe−ξ2

ξ2(n−m)
∣

∣Ln−m
m

(

ξ2
)∣

∣

2
. (5.28)

This expression can be further analysed separately in the supersonic and subsonic motion
regimes, where the resulting behaviour is remarkably different.

5.4.1 Supersonic Case

Applying to (5.28) the approximations given in section 5.3.4 for the case of supersonic motion
yields the expression

Fn→m =

∫

√
(n−m)(mb/ma)

−
√

(n−m)(mb/ma)
dξe−ξ2

ξ2(n−m)
∣

∣Ln−m
m

(

ξ2
)∣

∣

2

× g2
abρ0mb

π~3l0
√

2

m!

n!
. (5.29)

The dimensionless function F ′
n→m = π~

3l0
√

2Fn→m/(g
2
abρ0mb) is plotted in Fig. 5.2, and

shows the dependence of Fn→m on n and m. It is immediately clear that for all m < n the
transition rate coefficient is significant. In fact, for all states |n〉, the transition rate directly to
the ground state is of the same order as all other allowed transitions. This corresponds to the
atomic motion generating a rich distribution of superfluid excitations, which is characteristic
of the regime where the motion of the atom is supersonic with respect to the velocity of sound
in the superfluid (see section 5.4.2 for a comparison).

If we consider the energy dissipation rate (5.25) for a system in state |n〉 in the low tem-
perature limit (kBT ≪ ~ω), then we see that the largest contribution comes from transitions
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directly to the ground state or first excited state (Fig. 5.3). In addition, the complicated
excitation spectrum results in a non-exponential energy damping law, i.e., the energy dissi-
pation rate for a state n is not proportional to the energy of the state. We find instead for
ma = mb = m (Fig. 5.4) that

ε̇(n) = −g
2
abρ0m

3/2

π~4
√

2
α[ε(n)]3/2, (5.30)

where α = 0.3, and ε(n) = ~ωn is the energy of state n measured with respect to the ground
state. The total energy with respect to the ground state is then ε =

∑

n ε(n)pn, so that
ε̇ = −α̃∑n[ε(n)]3/2pn ≈ −α̃ε3/2, provided that ε3/2 ≈ ∑n ε(n)3/2pn. The time dependence
of the total energy is then approximately given by

ε(t) ≈
(

1

ε−1/2(t = 0) + α̃t/2

)2

, (5.31)

where α̃ = −g2
abρ0m

3/2ω3/2α/(π~
5/2

√
2).

The non-exponential damping law we obtain here can be understood in terms of a simple
classical argument for a “foreign” atom moving uniformly through the superfluid at a super-
sonic velocity. If σab is the scattering cross-section for the foreign atom interacting with the
superfluid, then the average number of collisions per unit time is ρ0σabp/ma, where p/ma is
the velocity of the lattice atom propagating through the superfluid. The momentum of the
excitation generated in a collision is q ∝ p. Because the motion of the foreign atom is su-
personic, the energy of the excitation is approximately q2/(2mb), and the energy dissipation
rate ε̇ ∝ ρ0σabp

3/m2
a ∝ ε3/2, which is the same energy dependence that we observe here.

In practice, this algebraic energy decay will be limited by the slowest transition in the
process, that from the first excited state to the ground state. On shorter timescales, popula-
tion in higher motional states will be transferred to lower states (including direct transfer to
the ground state) until the only significant population in an excited motional state is that in
the first motional state. Then the rate of transition to the ground state will be exponential,
as will the decay of the total system energy.

The transition from the first excited state to the ground state is also the most important
case for the low energy excitations which are likely to arise in quantum computing applica-
tions. Numerically we find that for ma = mb, F

′
1→0 = 0.3789. Thus,

F1→0 = 0.3789
g2
abρ0m

π~3l0
√

2
. (5.32)

The characteristic time for the transition from the first excited state to the ground state is
then expressed in terms of the number of cycles by

ωτ1→0

2π
=

1

0.3789

~
3l0ω√

2 g2
abρ0m

=
1

0.3789

1

16
√

2π2

1

ρ0a3
ab

aab

l0
, (5.33)

assuming that ma ≈ mb. In experiments, l0 will typically be an order of magnitude larger
than aab, and the parameter ρ0a

3
ab ∼ 10−4, so the characteristic transition time from the first
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Figure 5.2. The value of F ′
n→m = π~

3l0
√

2Fn→m/(g
2
abρ0mb), showing the co-

efficients of the transition rate from state n to state m in the case of supersonic
motion, as computed numerically from equation (5.29) with ma = mb.

excited state to the ground state will be of the order of 10 cycles. It is interesting that the
small prefactor in this expression is very important in giving such a rapid cooling rate. This
rate is sufficiently fast to be useful experimentally, particularly given that the transition rates
from states with higher quantum number to the ground state are all of the same order.

5.4.2 Subsonic Case

Applying the approximations given in section 5.3.4 for the subsonic case to (5.28), we obtain

Fn→m =

∫ l0ω(n−m)/(u
√

2)

−l0ω(n−m)/(u
√

2)
dξe−ξ2

ξ2(n−m)
∣

∣Ln−m
m

(

ξ2
)∣

∣

2

×g
2
abρ0ω

3

4πmb~

m!

n!

u
√

2

l0ω
. (5.34)

Fig. 5.5 shows F̃n→m = 4πmb~u
5Fn→m/(g

2
abρ0ω

3) plotted as a function of n and m. In
contrast to the supersonic case, we see that Fn→m is very sensitive to the difference (n−m),
and for sufficiently small ~ω/mau

2, the only significant contribution to transitions from the
state |n〉 are transitions to state |n − 1〉. This can be seen very clearly in Fig. 5.6, which
shows the contributions to the overall energy dissipation from the state |n〉.

If we investigate the rate of energy loss ε̇(n) from the state |n〉 as given by (5.25), the only
significant contribution comes from the term where m = n− 1. For very small ~ω/mau

2, we
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Figure 5.3. The value of (n − m)F ′
n→m, showing the contributions to the

energy dissipation of the system from transitions from state n to state m in
the case of supersonic motion. These results are computed numerically from
equation (5.29) with ma = mb.

can then expand the integrand near ξ = 0, and, noting that L1
n−1(0) = n, obtain

ε̇(n) ≈ −g
2
abρ0ω

3

4πmb~

(n− 1)!

n!

2l20ω
2

6u2
~ωn2

= − g2
abρ0ω

4

12πmambu7
~ωn. (5.35)

Thus, as the energy of state |n〉 measured with respect to the ground state is ε(n) = ~ωn, the
energy damping law is exponential. This is a direct consequence of the fact that, in contrast
to the supersonic case, only the decay mode into the next lowest oscillator state is significant
in the damping process. Fig. 5.7 illustrates from numerical calculations the linear dependence
of the damping rate on n. Note that damping still occurs in this regime despite the fact that
the velocity of the atom is slower than the speed of sound in the superfluid. This apparently
contradicts the Landau derivation of the critical velocity in the superfluid. However, we note
that the Landau criterion is a thermodynamic argument, and cannot be applied here, as the
motion is accelerated. In fact, this damping law has an analogy with that for dipole radiation
in classical electrodynamics (see section 5.6.2).

An analogy also exists between the supersonic and subsonic motion regimes here and
regimes of large and small Lamb-Dicke parameter respectively in the context of laser cooling
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Figure 5.4. The value of dε′/dt =
∑

(m<n)(n−m)F ′
n→m plotted as a function

of n for supersonic motion, showing the total rate of energy dissipation for a
system instantaneously in a oscillator state with quantum number n. The points
show the values computed numerically from equation (5.29) with ma = mb, and
the solid line is a fitted curve of the form dε′/dt = αn3/2, with α = 0.301.

of trapped ions in a harmonic potential. In that system the Lamb-Dicke parameter, η, is the
ratio of the size of the ground state wavefunction to the wavelength of the cooling laser, and
the interaction Hamiltonian for the system is proportional to eikx̂ = eiη(â+â†) [1]. Here the
interaction Hamiltonian is proportional to eiqxx̂, and whilst η is a fixed parameter and qx is
not, qx is constrained to be a small or large parameter by the conservation of momentum
when excitations are generated in the superfluid.

During the cooling process, the coupling that exists between two states, which is propor-
tional to |〈m| exp(−iηx̂)|n〉|2 is then analogous in the two cases. We observe cooling directly
to the ground state from all excited states in the supersonic regime, and this is also a char-
acteristic of cooling schemes in ion traps with a large Lamb-Dicke parameter. When η or qx
are small (the subsonic regime or small Lamb-Dicke parameter limit), the matrix elements
simplify for m 6= n, 〈m| exp[iη(a+a†)]|n〉 ≈ 〈m|iη(â+â†)|n〉, and coupling only exists between
nearest neighbour states (this is known in ion trap cooling as coupling to the red and blue
sidebands only).
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Figure 5.5. The value of F̃n→m = 4πmb~u
5Fn→m/(g

2
abρ0ω

3), showing the
coefficients of the transition rate from state n to state m in the case of subsonic
motion, as computed numerically from equation (5.34) for l0ω/u = 0.01.

5.4.3 Finite Temperature Effects

At finite temperatures, the terms proportional to Hn,m in (5.21) contribute heating effects
due to the absorption of thermal excitations in the superfluid. When the temperature is
significant, the final equilibrium motional state distribution will contain non-zero excited state
probabilities. These can be calculated using the detailed balance condition [28]. Considering
the transfer rates for atoms between oscillator states with consecutive quantum numbers, we
write for the equilibrium probability distribution p̄n = pn(t→ ∞),

Fn+1→np̄n+1 = Hn+1,n(p̄n − p̄n+1), (5.36)

so that

p̄n+1 =
Hn+1,n

Fn+1→n +Hn+1,n
p̄n. (5.37)

Substituting the expressions from (5.22) and (5.24), and integrating over the modulus of q,
this expression simplifies to

p̄n+1 =
N(q1)

N(q1) + 1
p̄n, (5.38)
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Figure 5.6. The value of (n − m)F̃n→m, showing the contributions to the
energy dissipation of the system from transitions from state n to state m in the
case of subsonic motion. These results are computed numerically from equation
(5.34) for l0ω/u = 0.01.

where ~q1 =
√

2~mbω is momentum of excitations with energy εq1 = ~ω. Thus, p̄n =
[N(q1)/(N(q1) + 1)]np̄0, and using the normalisation condition

∑∞
n=0 p̄n = 1, we obtain

p̄n = p̄0e
−n~ω/(kBT ) =

(

1 − e−~ω/(kBT )
)

e−n~ω/(kBT ). (5.39)

Hence, the equilibrium state occupation probabilities are simply given by the Boltzmann
distribution, and the probability that an atom is in the ground motional state is p̄0 = 1 −
e−~ω/(kBT ). Provided kBT ≪ ~ω, the absorption of thermal excitations will not significantly
decrease the cooling rate, and will not prevent the cooling of essentially all of the population
to the ground state. This obtainable under reasonable experimental conditions, for example,
if ω ∼ 2π× 105s−1, ~ω/kB ∼ 5µK, so that for T = 500nK, we then obtain 1− p̄0 ≈ 5× 10−5.

5.5 Decoherence for non-symmetric interactions

In the case where the interaction between the atoms in the lattice and the superfluid atoms is
not made symmetric as described in section 5.3.1, decoherence of the internal state will occur
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Figure 5.7. The value of dε̃/dt =
∑

(m<n)(n−m)F̃n→m plotted as a function of
n for subsonic motion, showing the total rate of energy dissipation for a system
instantaneously in a oscillator state with quantum number n. The points show
the values computed numerically from equation (5.34), and the solid line is a
fitted straight line of the form dε̃/dt = αn, with α = 3.40 × 10−5.

as the relative phase of the qubit is randomised by collisional interactions with the superfluid.
This process can be modelled by writing the interaction Hamiltonian for atoms in the internal
states |0〉 and |1〉 as Ĥ0 = a0Ĥint and Ĥ1 = a1Ĥint respectively. Because Ĥint ∝ gab ∝ aab, a0

and a1 are proportional to the scattering lengths for interactions between superfluid atoms
and atoms in the lattice in states |0〉 and |1〉 respectively.

Initially the internal atomic state was neglected in the derivation of the master equation in
appendix 5.B, as the interaction Hamiltonian was assumed to be independent of the internal
state. In order to estimate the rate of decoherence, we must compute the master equation
for a density operator which includes the internal atomic state. Once again projecting the
density operator onto states which are diagonal in a motional state basis, we write

P̂Ŵ =
∑

i,j∈{0,1}

∑

n

|n〉mot mot〈n| ⊗ |i〉〈j|pij,n, (5.40)

where |n〉mot denotes the motional (harmonic oscillator) state of the atom, and |i〉, where i ∈
{0, 1} denotes the internal atomic state. If we take the trace of P̂Ŵ over the motional states,
and obtain for the density operator, Trmot(Ŵ ) =

∑

i,j |i〉〈j|pij , then the rate of decoherence
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is the rate of decay of the off-diagonal elements, p01 and p10, of this reduced density operator
for the internal states.

In the long time limit (for time scales larger than the oscillator period), all of the stan-
dard approximations made in the derivation of the master equation in appendix 5.B once
again apply. Rewriting the original master equation for the new interaction Hamiltonian and
neglecting the heating terms, we obtain

ṗij,m = aiaj

∑

n>m

Fn→mpij,n −
a2

i + a2
j

2

∑

n′<m

Fm→n′pij,m. (5.41)

Thus, the equation of motional for the elements diagonal in the internal states are identical
to those given in (5.21), except that they are multiplied by a2

0 for p00,m and a2
1 for p11,m,

as is expected.

Taking the trace of Ŵ over the motional states, we obtain the equation of motion for the
reduced density operator,

ṗij =
∑

m

ṗij,m = −(ai − aj)
2

2

∑

m

∑

n<m

Fm→mpij,m. (5.42)

For i = j, ṗij = 0, so the populations in each internal state are constant, as we expect. The
rate of decoherence is given by the decay of the off-diagonal elements, which by comparison
with (5.21) is seen to be the rate of cooling transitions, multiplied by (a0 − a1)

2/2. In the
long time limit with the superfluid at zero temperature, where the motional states are all
cooled to the ground state and cooling transitions cease, the rate of decoherence also goes to
zero. If (a1 − a0)

2 ≪ (a1 + a0)
2, so that the timescale on which the cooling occurs is much

faster than that of the decoherence, the total decoherence should be small. However, it is
important to note that in the case of finite temperature, transitions between motional states
will continue to occur after the atoms are cooled to their steady state distribution, resulting
in finite levels of decoherence in the steady state regime.

For time scales shorter than the oscillator period, the observed decoherence will be
strongly dependent on the manner in which the atom is introduced into the superfluid. The
the limiting case in which the atom is suddenly immersed in superfluid (so that the initial
overall density matrix is factorised into the system and the superfluid), an “initial slip” in
the coherence occurs, a behaviour which can be analysed by directly performing the time
integral in (5.67) for the combined density operator and interaction Hamiltonian. At zero
temperature, we obtain equations of motion for the elements of the reduced density operator
for the internal states given by

ṗij ≈ −(ai − aj)
2g2

abρ0

V ~

∑

q

(uq + vq)
2
∑

m,n

pij,m
i(e−i[εq−(m−n)~ω]τ/~ − 1)

εq − (m− n)~ω

∣

∣

∣
〈n|e−iqxx̂|m〉

∣

∣

∣

2
.

(5.43)
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Figure 5.8. Numerical calculations of the contributions to the initial de-
coherence slip from terms in (5.43), in the supersonic regime with ~ω =
25mu2. The quantities plotted are dimensionless, and expressed in terms of
−(ai − aj)

2g2
abρ0/(~

3l0). For (a) m = 0, n = 0 and (b) m = 1, n = 1 (solid
lines), we observe an initial decoherence slip which decays on a time scale of
a few oscillator cycles. For (c) m = 1, n = 0 and (d) m = 2, n = 0 (dash-dot
lines), the contributions settle in less than one oscillator cycle to the same long
time values given by (5.42). For (e) m = 0, n = 1 and (f) m = 0, n = 2 (dashed
lines), the contributions decay rapidly to zero in less than one oscillator cycle.

Note that as t→ ∞, the factor involving the exponential approximates a delta function,
and we recover the behaviour described by (5.42). For short times the real part of the terms
in this expression for particular combinations of n and m exhibit three different types of
time dependent behaviour, examples of which are shown in Fig. 5.8. For n < m, the terms
the in this expression settle rapidly within one oscillator cycle to the same values that they
produce in the long time limit, (5.42), and within the first oscillator cycle give contributions
of the same order as their long time values. For n > m, the terms correspond to a small
initial rate of coherence loss, which decays to zero in much less than one oscillator cycle, a
timescale which becomes rapidly shorter as (n −m) increases. Thus, the total decoherence
arising from these terms is very small. From the terms where m = n we obtain the most
significant contributions to the initial decoherence slip that are not accounted for by the
long time behaviour. These contributions decay to zero on a timescale of about 2 oscillator
cycles, and at their peak values produce decoherence rates of the same order as terms in the
expression for the long time rates. The signicant point about these terms is that they describe
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decoherence which will occur even if the atoms are in the motional ground state, in contrast
with decoherence in the long time regime. If there is a significant population in the excited
motional state, then the initial slip will give a small contribution to the total decoherence
as compared with the long time behaviour. However, if the atoms are essentially all in the
ground state, then this initial slip produces decoherence which would not otherwise arise.
In all cases, the rate of decoherence is proportional to (a0 − a1)

2, so that if the scattering
lengths for the states |0〉 and |1〉 differ only by a small amount, then the total decoherence
introduced will be small.

5.6 The Semi-Classical Approximation

5.6.1 Supersonic Case

It is interesting to compare the fully quantum calculation of the damping rates to the cal-
culation in the semi-classical approximation. Using this approximation, the calculation is
performed similarly to the calculation of damping due to radiation from an oscillating charge,
which provides a useful physical analogy between the two situations.

In this calculation we make use of the relationship between quantum matrix elements
and the Fourier components of the classical trajectory of the system [29]. Strictly speaking,
this approximation is valid only when the equivalent quantum matrix elements are taken
between states of large quantum number, and where the difference in the quantum numbers
is small relative to the quantum numbers. We will discuss the validity of the approximation in
practice at the end of the calculation. The classical trajectory of the atom in the lattice may
be written in 1D as r(t) → rmax cos(ωt)ẑ, where ẑ is the axial unit vector along the lattice.
Because the motion is periodic with period 2π/ω, the frequency spectrum of the resulting
excitations will be discrete with frequencies ωn for integer n. Analogously to (5.22), we then
write the rate of energy dissipation for the atom in the lattice (at zero temperature) as

ε̇ = −2π

~

∑

q

∑

n

|Tq(ωn)|2δ(~ωn− εq)~ωn, (5.44)

where

∑

q

|Tq(ωn)|2 =
∑

Nf

∣

∣

∣

∣

∣

ω

2π

∫ 2π/ω

0
〈Nf |Ĥint|Ni〉e−iωntdt

∣

∣

∣

∣

∣

2

, (5.45)

with |Nf 〉 the final state of the superfluid (normally a state with a particular number of
excitations of momentum ~q). This expression is also averaged over the initial state of the
system |Ni〉, which will usually correspond to a thermal distribution of excitations.

Assuming that we are in the supersonic motion regime and applying the approximations
given in section 5.3.4, we obtain

Tq(ωn) =
gab

√
ρ0√
V

ω

2π

∫ 2π/ω

0
e−iqxrmax cos(t)e−iωnt dt. (5.46)
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Using the identity
∣

∣

∣

∣

1

2π

∫ 2π

0
e−iz cos(ζ)e−inζ dζ

∣

∣

∣

∣

2

= J2
n(z), (5.47)

where Jn(z) is an ordinary Bessel Function, and integrating over the angular values of q in
spherical coordinates then gives

ε̇ = −g
2
abρ0

2π

∑

n

∫ ∞

0
dq q2

∫ 1

−1
dξJ2

n(qrmaxξ)

×δ(~ωn− εq)ωn. (5.48)

We now integrate over q to give

ε̇ = −g
2
abρ0m

3/2
b ω3/2

√
2π~5/2

∑

n

n3/2

∫ 1

−1
dξJ2

n

(

ξa
√
n
)

, (5.49)

where a = rmax

√

2mbω/~. We can see that many values of n contribute significantly to
this sum, which is analogous to the full quantum result, in which many different transitions
between oscillator levels had significant coefficients Fn→m. As noted in section 5.4.1, this fact
arises from the the motion of the oscillating atom being faster than the speed of sound in
the superfluid. This spectrum of generated excitations can be seen as being analogous to the
result for electromagnetic radiation from a charge moving faster than the speed of light (in a
dielectric), which can be computed semi-classically using a similar method to that used here.

It is possible to determine analytically the functional dependence of (5.49) on rmax by
finding an approximate expression for the integral over ξ. In the limit where the argument
of the Bessel function is large, we can write

F (a, n) =

∫ 1

−1
dξJ2

n

(

ξa
√
n
)

≈ 2

∫ 1

ξ0

dξ
2 cos2(ξa

√
n− nπ/2 − π/4)

πξa
√
n

≈ 2

πa
√
n

∫ 1

ξ0

dξ
1

ξ
=

2

πa
√
n

ln

(

a√
n

)

, (5.50)

where ξ0 =
√
n/a is the lower limit for ξ in which the cosine approximation of the Bessel

function is valid. This expression is strictly only valid for n ≪ a2 = 2r2maxmbω/~. At larger
values of n, F (a, n) is exponentially small, and the functional dependence of

∑

n n
3/2F (a, n)

on a can be found from the point at which the summation is cut off, and for a system of
energy maωr

2
max/2, nmax = maωr

2
max/(2~) = a2ma/(4mb). Approximating the sum by an

integral, we can then write

ε̇ = −C g
2
abρ0m

2
amb[1 + 2 ln(4mb/ma)]ω

3r3max

32π2~4
., (5.51)

where C is a constant which for large values of a is independent of a. Fig. 5.9 shows a
numerical calculation of C(a), from which we observe that for large a, C ∼ 1.75. Moreover,
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Figure 5.9. The value of C computed numerically as a function of a =√
2 rmax/l0 by comparison of the results from (5.49) and (5.51). Note that this

curve is discontinuous because of the discrete sum in (5.49), which was cut off
at the highest integer less than a, and that C = 0 for a < 2, because a < 2
corresponds to a sum cut off at n = 0. The value of this function in the limit
as a→ ∞ gives C ∼ 1.75.

the approximation is also very good for small values of a > 2, so that C is essentially a
constant for all physical values of a.

If we use the classical expression rmax =
√

2ε/(maω2), where ε is the energy of the
oscillating atom, we can rewrite (5.51) as

ε̇ = −C[1 + 2 ln(4mb/ma)]

√
2 g2

abρ0m
1/2
a mb

16π2~4
ε3/2. (5.52)

As in the quantum case, the damping is non-exponential as a result of the rich distribution of
generated excitations and instead ε̇ ∝ ε3/2. If we compare this result to that from equation
(5.30), the ratio of the semi-classical result to the quantum result for ma = mb is C[1 +
4 ln(2)]/(8απ) ≈ 0.88. The reason for this becomes clear when we examine the terms of the
series

∑

k k
3/2F (2n, k) (Noting that if we begin in the initial state |n〉 then a = 2n), and

compare them to the equivalent terms in the quantum calculation,
∑

k kFn→(n−k). This is
shown for an initial state n = 10 in Fig. 5.10. We see that the terms agree well for small k but
that they diverge as k → n. This is because the equivalence between the semi-classical result
from the Fourier spectrum and the quantum matrix elements is strictly only valid when k is
small. Because in the calculation of energy dissipation rates the terms are weighted by an
additional factor of k, the terms where the largest discrepancy arises are always significant in
the calculation of the damping rates, and thus this discrepancy does not significantly decrease
as n→ ∞.



5.6 The Semi-Classical Approximation 63

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

k

Quantum      
Semiclassical

F 

Figure 5.10. Numerical values of the quantum result F10→(10−k) (solid line)
and the semi-classical result F (20, k) (dotted line) in the supersonic regime.
Note that we observe very good agreement for small k, but the results diverge
for higher values of k.

5.6.2 Subsonic Motion

In addition to the approximations given in section 5.3.4, we note that for the purposes of the
semi-classical calculation in the subsonic regime, |q.rmax| ≤ qvmax/ω = vmax/u≪ 1. Thus,

1

2π

∫ 2π

0
e−iqxrmax cos ζe−inζ dζ

≈ 1

2π

∫ 2π

0
qxrmax cos(ζ)e−inζ dζ = i

qxrmax

2
δn,±1, (5.53)

and so

ε̇ = − g2
abρ0

4πmbu

∫ ∞

0
dq q3

∫ 1

−1
dξ

∣

∣

∣

∣

qrmaxξ

2

∣

∣

∣

∣

2

×δ(~ω − εq)~ω

=
−g2

abρ0ω
4

12πu7mbma
ε (5.54)

As mentioned in section 5.4.2, damping occurs here despite the fact that the velocity of the
atom being slower than the speed of sound in the superfluid appears to contradict the Landau
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derivation of the critical velocity in the superfluid, and we obtain an exponential damping
law. In the same sense that the previously discussed case of supersonic motion is analogous
to radiation from a charge moving faster than the speed of light in a dielectric, this case is
analogous to dipole radiation from an accelerating charge. The approximation made that
results in only one term in the sum being significant, (5.53), similarly corresponds to the
dipole approximation in non-relativistic quantum electrodynamics.

Note that if we substitute ε = ~ωn into (5.54), then we obtain exactly the same result we
obtained from the quantum case (5.35). The semi-classical approximation works extremely
well here, because the only significant contribution to the quantum calculation comes from
matrix elements between states with quantum numbers differing by one.

5.7 Immersion in a Strongly Correlated 1D Superfluid

In this section we investigate the damping that occurs when the lattice is immersed in a quasi-
one dimensional superfluid, which is an example of strongly correlated quantum liquid. In a
real experiment this setup is not particularly practical for cooling the motion of the atoms.
For a gas to be quasi-one dimensional, the excitation modes in the transverse directions must
have energies larger than all other significant energy scales in the system, and so the oscillator
energies for lattice atoms, ~ω must be much smaller than the energies of the transverse
excitations in the superfluid. Furthermore, the motion of the oscillator will only be damped
in one dimension (along the direction of the quasi-1D superfluid), and so the oscillator should
be made strongly anisotropic so that in the transverse directions the oscillator is always in
the motional ground state and need not be cooled. However, the study of the cooling process
in this context is still interesting, for example, because the lattice atom in this setup could
be used as a probe to provide spectroscopic information about the 1D Bose gas.

In general the excitation spectrum of such a one-dimensional Bose gas is complicated.
In the case of short-range interactions between the particles exact analytical solution exists
both for the ground state wavefunction and for the excitation spectrum [30] for arbitrary
strength of the interparticle interactions and the excitation energies. However, in the limit
of long wavelength the excitations are phonons and the system can be described within a
hydrodynamic approach. Following [31] we represent the field (Bose-particle annihilation)

operator in the form: Ψ̂(x) ∝ √
ρ0 + δρ̂eiφ̂, where φ̂ and δρ̂ are phase and density fluctuation

fields respectively and obey the commutation relation [δρ̂(x), φ̂(y)] = iδ(x− y), and ρ0 is the
1D density (averaged, in practice, over the transverse directions). The low-energy effective
Hamiltonian for the liquid is then

Ĥ0 =
~

2π

∫ ∞

−∞
dx[vJ(∂xφ̂)2 + vN (πδρ̂)2], (5.55)

where vJ = π~ρ0/mb, vN = κ/(π~ρ0), and κ is compressibility per unit length. The excitation
spectrum corresponding to this Hamiltonian satisfies a linear dispersion relation εq = ~vsq,
where the velocity of sound is given by vs = (vJvN )1/2.

The parameters vJ and vN are phenomenological and can be found from the exact Lieb-
Liniger solution [30]. The dependence on the interaction strength between gas particles can be
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described using the dimensionless parameter, γ = mbgbb/(~
2ρ0). In the week interaction limit,

γ ≪ 1, the velocity of sound is given by the usual Gross-Pitaevskii value: vs =
√

gbbρ0/mb.
If the interaction is very strong, γ ≫ 1, then the interaction effectively makes the particles
impenetrable, and hence in a true 1D system, indistinguishable from Fermions. This is
called the Tonks gas regime, and the sound velocity is equal to the effective Fermi velocity:
vs = π~ρ0/mb. The energy spectrum is linear for εq ≪ gbbρ0 (the chemical potential of a
weakly interacting Bose-gas) and εq ≪ π~

2ρ2
0/(2mb) (the Fermi energy of the Tonks gas)

for the cases of weak and strong interactions, respectively. At higher energies the excitation
spectrum is no longer universal and depends on the details of the interparticle interactions.
Because εq and the trapping frequency ω in the lattice are related via energy conservation,
the motion of the lattice atoms must then be subsonic with respect to vs for the model to be
valid.

The operator for density fluctuations in this regime is given by

δρ̂ =
∑

q

(

2q
√
K

πL

)1/2
(

b̂qe
iqx + b̂†qe

−iqx
)

, (5.56)

where L is the length of the BEC and K = (vJ/vN )1/2. The quantity K depends on the
interparticle interactions and is related to the scaling dimension of the particle field operator:
〈Ψ̂†(x)Ψ̂(x′)〉 ∼ |x− x′|−1/(2K) for large |x− x′|. The function K(γ) monotonically decreases
as γ grows, so that K(γ → 0) ≈ π[γ − (1/2π)γ3/2]−1/2 and K(γ → ∞) ≈ (1 + 2/γ)2 [30].
Note also that for the quasi one-dimensional system, gbb = 4π~

2abb/mbl
2
⊥, where l⊥ is the

transverse confinement length of the BEC, provided that as ≪ l⊥ [32].

In the limit of small oscillation frequencies ω, we apply the same approximation (5.53)
used in section 5.6.2, and obtain

ε̇ = −2ωg2
ab

√
K

π

∫ ∞

0
dq q

∣

∣

∣

qrmax

2

∣

∣

∣

2
δ(~ω − ~vsq)

=
−g2

ab

√
Kω2

π~mav4
s

ε (5.57)

For small γ, K ≈ π~
√

ρ0/(mbgbb) and vs =
√

gbbρ0/mb, so

ε̇ ≈ −g2
abω

2m
7/4
b√

π~maρ
7/4
0 g

9/4
bb

ε. (5.58)

The transition rate constant is then Γǫ ∼ ω(gab/gbb)
2(~ω/ρ0gbb)(mbgbb/~

2ρ0)
3/4(mb/ma)/

√
π ≪

ω and hence is generally small. In the opposite limiting case for large γ, K ≈ 1 and
vs = π~ρ0/mb, so

ε̇ ≈ −g2
abω

2m4
b

π5~5maρ4
0

ε. (5.59)

Here, Γǫ ∼ ω(mbgab/~
2ρ0)

2(ωmb/~ρ
2
0)(mb/ma)/π

5. Thus, in this regime, the damping rates
can be made very fast, provided that γab = mbgab/~

2ρ0 = gabγ/gbb is made very large.
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However, this regime is difficult to obtain experimentally, and in most current experiments
γ ∼ 1.

In both cases the damping that we obtain is exponential, which again arises because the
motion we consider is subsonic, and produces excitations at only one significant momentum.
The energy exchange rate grows as a function of ω, in a manner analogous to dipole radiation
in quantum electrodynamics.

5.8 Summary

We have shown that the immersion of a system of atoms in an optical lattice in a superfluid
causes damping of atoms in excited motional states, and that this damping can be used to
transfer these atoms to the ground motional state whilst preserving their initial internal state
and any entanglement between the atoms. For typical experimental parameters, this transfer
occurs in a characteristic time of around 10 oscillator cycles, which is sufficiently rapid to
be useful experimentally. These typical parameters come from a regime in which the atoms
in the lattice are moving faster than the velocity of sound in the superfluid, which generates
a rich distribution of excitations, involving significant transitions from all levels directly to
the ground state. In the opposite regime, where the velocity of the atoms in the lattice is
significantly slower than the speed of sound in the superfluid, damping still occurs because the
motion is accelerated, but only transitions between neighbouring oscillator levels contribute
significantly to the damping process.

Provided that the temperature in the non-superfluid fraction of the gas is much smaller
than the oscillator level spacing in the lattice, heating effects due to absorption of thermal
excitations is not a significant effect in this process. This is the case for experimentally realis-
able conditions. At higher temperatures, the system would be cooled not to the ground state,
but to a thermal distribution of motional states corresponding to a Boltzmann distribution
with the same temperature as that in the normal component.

The supersonic motion regime discussed here is readily realisable in present experiments.
Together with a careful choice of internal atomic states used to encode a qubit, this damping
mechanism thus provides a decoherence-free means to cool an atomic qubit to its motional
ground state.

Note added in proof: Recently, we became aware of a related study done by Astracharchik
and Pitaevski [36], in which the drag force on an impurity traveling with a constant velocity
through a condensate is computed. The present work differs in that we consider the motion
of an oscillating atom immersed in a superfluid, and deal specifically with the application of
the resulting drag force to decoherence suppressed cooling of an atomic qubit.
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5.A Dispersion Relation for a Foreign Particle in a Superfluid

When a foreign particle is immersed in a superfluid, its interaction with the condensed atoms
can be described as a collective excitation, which represents both the injected particle and
the cloud of the condensed atoms. This leads to a modification of the dispersion relation
as well as to the appearance of frictional forces. Since the goal of the current work is to
calculate the damping of atomic motion due to the friction force experienced by an alien
particle in a harmonic trap, we first calculate the dispersion relation for a free foreign particle
immersed into a superfluid of atoms, which moves at a constant velocity. This situation is
conceptually simpler, and allows us to consider the validity of treating the interaction between
the superfluid and the foreign particle as a simple density-density interaction.

For a given momentum, p, the energy of the resulting collective excitation is given by

E =
p2

2meff
+ gabρ0 + δE(2), (5.60)

where meff ≈ ma is the effective mass of the foreign atoms, gab is the coupling coefficient
for the interaction between the foreign particles and the superfluid, and ρ0 is the condensate
density.

δE(2) = g2ρ0

∑

q

(

(uq + vq)
2

p2/2ma − ǫq − (p− q)2/2ma + i0
+

1

q2/2µ

)

, (5.61)

and µ−1 = m−1
b +m−1

a is the reduced mass. This expression is a trivial generalisation of the
standard superfluid ground state energy calculation (see [26]). The counterterm (the second
term in the brackets) is obtained by replacing the Fourier component of the interaction
potential in the Hamiltonan by the scattering length, aab. It is possible to simplify (5.61) in
two particularly relevant cases.

If the momentum, p, is small (the foreign particle moves at subsonic velocities, p/ma ≪ u),
then the integral in (5.61) converges at q ∼ µ. The analysis of the energy denominator leads
to the Landau critical velocity condition for subsonic particles and thus Im δE(2) = 0 . For
the calculation of ReδE(2) we can first set p = 0 and find:

δE(2) = g2
abρ0

∑

q

(

− (uq + vq)
2

ǫq + q2/2ma
+

1

q2/2µ

)

. (5.62)

The calculation of the integral over q is straight forward. For example, in the case ma =
mb, we find δE(2) = 4gabρ0(ρ0g

3
ab)

1/2/3π2, which is a small correction to the leading order
((ρ0g

3
ab)

1/2 ≪ 1) and hence can further be neglected. One can expand δE(2) in powers of
p2/(maµ) to find a similar small correction to the effective mass of the immersed particle,
(meff −ma)/ma ∼ (ρ0g

2
ab)

1/2 ≪ 1. Therefore, interaction effects up to leading order in the
gaseous parameter do not lead to damping for subsonic motion. Both the mass of the particle
and the effective interaction are changed by a small quantity ∼ (ρ0a

3)1/2 ≪ 1, which can be
neglected. This means that the cooling may only originate from accelerated motion.

In the other limiting case, where the motion of the foreign particle is supersonic, p/ma ≫
u, Re δE(2) = 0, and the imaginary part gives the damping (see [33])

Im δE(2) =
8πρ0a

2
abp

ma
. (5.63)
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Here, the effects of the interaction between the foreign particle and the the superfluid (to
leading order) generate damping only, which is nothing else but the classical result for a
particle moving through a gas of classical scatterrers of a given density ρ0. The difference
between the real mass and the effective mass can once again be neglected, so that in both
subsonic and supersonic regimes, the interaction between a foreign particle and a superfluid
may be treated as a density-density interaction.

5.B Derivation of the Master Equation

We treat the superfluid with Bogoliubov excitations as a reservoir, with density operator
R̂. In the interaction picture, and after making the Born-Markov approximation, the master
equation for the density operator ŵ of a system which interacts with a reservoir via an
interaction Hamiltonian Ĥint can be shown to be given by [34]

˙̂w = − 1

~2

∫ t

0
dt′TrR[Ĥint(t), [Ĥint(t

′), ŵ(t) ⊗ R̂]], (5.64)

where TrR denotes the trace over the reservoir states.

We write ŝq,1 = eiqxx̂, ŝq,2 = e−iqxx̂, Γ̂q,1 = b̂q and Γ̂q,2 = b̂†q, so that

Ĥint = gab

√

ρ0

V

∑

q

(uq + vq)
∑

i=1,2

ŝiΓ̂i, (5.65)

and then substitute this expression into (5.64) to give

˙̂w = −g
2
abρ0

V ~2

∑

q

(uq + vq)
2
∑

i,j={1,2}

∫ t

0
dt′

[

ŝi(t)ŝj(t
′)ŵ(t) − ŝj(t

′)ŵ(t)ŝi(t)
]

〈Γ̂i(t)Γ̂j(t
′)〉R

+
[

ŵ(t)ŝj(t
′)ŝi(t) − ŝi(t)ŵ(t)ŝj(t

′)
]

〈Γ̂j(t
′)Γ̂i(t)〉R,

(5.66)

where we have used the cyclic property of the trace, dropped the operator subscript q, and
written TrR(R̂Â) = 〈Â〉R. We have also used the fact that 〈Γ̂q,i(t

′)Γ̂q′,j(t)〉R = 0 for q 6= q′.

Proceeding in the standard way, we change the variable of integration to τ = t− t′, and

note that b̂q(t− τ) = e−iĤbτ/~b̂q(t)eiĤbτ/~ = eiεqτ/~b̂q(t) and similarly e−iĤbτ/~b̂†q(t)eiĤbτ/~ =

e−iεqτ/~b̂†q(t).

We then make use of the assumption that ŵ(t) ≈ P̂ŵ(t) (see (5.19)), and write the master

equation in a Fock state representation. Noting also that 〈b̂q(t)b̂q(t)〉R = 〈b̂†q(t)b̂†q(t)〉R = 0,
we obtain

˙̂w = −2g2
abρ0

V ~2

∑

q

(uq + vq)
2
∑

m,n

∫ t

0
dτ
[

|m〉〈m|e−iqxx̂|n〉〈n|eiqxx̂|m〉〈m|pmeiωτ(m−n)

−|m〉〈m|e−iqxx̂|n〉〈n|e−iqx.x̂|m〉〈m|pneiωτ(n−m)
] (

e−iεqτ/~〈b̂qb̂†q〉R + eiεqτ/~〈b̂†qb̂q〉R
)

. (5.67)
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Assuming that the correlation time of the superfluid reservoir is much shorter than that
in the system we can extend the integration over τ → ∞, and making the replacement
∫∞
0 dτei(ε−ε0)τ/~ → π~δ(ε− ε0), we obtain

ṗm =
2πg2

abρ0

V ~

∑

q

(uq + vq)
2
∑

n

∣

∣

∣〈m|e−iqxx̂|n〉
∣

∣

∣

2
{

[δ (~ω(n−m) − εq) pn − δ (~ω(m− n) − εq) pm] 〈b̂qb̂†q〉R
+ [δ (~ω(m− n) − εq) pn − δ (~ω(n−m) − εq) pm] 〈b̂†qb̂q〉R

}

. (5.68)

The first two terms here (those proportional to 〈b̂qb̂†q〉R) describe the damping by creation

of excitations in the superfluid, whilst the second two terms (those proportional to 〈b̂†qb̂q〉R)
describe heating effects by absorption of thermally generated excitations. At finite tempera-
tures, the reservoir correlation functions are given by the number of thermal excitations N(q)

with momentum ~q, 〈b̂†qb̂q〉R = N(q).

5.C Estimation of δΨ̂†
δΨ̂ Terms

The heating effects due to absorption of thermal excitations has already been discussed in
section 5.4.3, where the equilibrium distribution at finite temperatures was shown to be a
Boltzmann distribution. The small additional damping terms arising at finite temperatures
from the δΨ̂†δΨ̂ term, which are small when the condensate density, ρ0 is large and which were
omitted when the density fluctuation operator δρ̂ was originally written, may be estimated
using a semi-classical treatment. The operator for the additional density fluctuation terms is
given by

δρ̂′ = δΨ̂†δΨ̂ =
1

V

∑

p,p′

upup′ âpâ
†
p′e

i(p−p′).r

+ vpvp′ â†pâp′e−i(p−p′).r + upvp′ âpâp′ei(p+p′).r

+ upvp′ â†pâ
†
p′e

−i(p+p′).r. (5.69)

The first two terms in this expression correspond to the inelastic scattering of thermal excita-
tions with momentum ~p to excitations with momentum ~p′, and the second two correspond
to the absorption and emission respectively of two excitations with momenta ~p and ~p′.

For the case of supersonic motion where uq → 1 and vq → 0, the correction to the
dissipation rate is then given by

ε̇′ = −πg
2
ab

~

∑

p,p′

∑

n

[N(p) −N(p′)] δ(~ωn− εp′ + εp)

∣

∣

∣

∣

∣

ω

2π

∫ 2π/ω

0
ei(p−p′).r(t)dt

∣

∣

∣

∣

∣

2

~ωn,

(5.70)

where, as before, N(p) = (exp[εp/(kBT )] − 1)−1 is the mean number of thermal Bogoliubov
excitations with momentum ~p present in the superfluid.
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In order to cool the system to the ground state we already require ~ω ≫ kBT , which
has been shown to be a reasonable experimental condition in section 5.4.3. In this case, the
thermally generated excitations with momentum ~p will have a much smaller energy than
the scattered excitations, which have momentum ~p′. Also, εp′ > ~ω ≫ kBT and N(p′) ≈ 0.
Thus,

ε̇′ ≈ −πg
2
ab

~

∑

p,p′

∑

n

N(p) δ(~ωn− εp′)

∣

∣

∣

∣

∣

ω

2π

∫ 2π/ω

0
ei(p′).r(t)dt

∣

∣

∣

∣

∣

2

~ωn,

=
ε̇

2ρ0

1

2π2

∫ ∞

0
p2dpN(p). (5.71)

This result is proportional to the density of thermal excitations and essentially describes the
classical friction due to scattering of thermal excitations by the moving particle.

If kBT ≪ mbu
2/2, then εp ≈ ~up. The additional damping is then given in terms of the

rate ε̇ in (5.52) by

ε̇′ =
ε̇ζ(3)

2π2ρ0(~u)3
(kBT )3, (5.72)

where ζ(x) denotes the Riemann Zeta function. Note that because the wavenumber of
phonons in this regime is of the order of kBT/(~u), this result is proportional to the density
of thermal phonons, ρphonons. Thus the additional damping term is equal to that in (5.52),
but with the numerical coefficient modified, and the density of the condensate ρ0 replaced by
the density of thermal phonons, ρphonons. This term will always be small, as in this regime
T < Tc, the critical temperature of the Bose gas, so ρ0 ≫ ρphonons.

If kBT ≫ mbu
2/2, then εp ≈ ~

2p2/(2mb). The rate of additional damping is then

ε̇′ =
ε̇ζ(3/2)m

3/2
b

4
√

2π3/2ρ0~
3
(kBT )3/2. (5.73)

For a uniform Bose gas the critical temperature for Bose condensation can be expressed as
[35]

kBTc =
2π~

2ρ
2/3
t

mb[ζ(3/2)]2/3
, (5.74)

where ρt = ρ0 + ρn is the total density, and ρn is the density of the normal component, so
that we can rewrite (5.73) as

ε̇′ =
ε̇ρt

2ρ0

(

T

Tc

)3/2

=
ε̇ρn

2ρ0
, (5.75)

where we have used the well known result ρn = ρt(T/Tc)
3/2 [35]. Thus, this result has the

same form as the damping rate obtained in (5.52), but the condensate density is replaced by
the density of the normal component, and the numerical coefficient is decreased by a factor
of 2. Again, at small temperatures compared with the critical temperature, T ≪ Tc, when
ρn ≪ ρ0, the contribution from this term will be small.

The same calculation can be performed for the subsonic case. In this regime, the con-
tribution from the terms involving âpâp′ and â†pâ

†
p′ is small, because the double summation
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over p and p′ is restricted by energy conservation such that |εp + εp′ | = ~ωn, and in the
subsonic case, this quantity is always small. With respect to the subsonic energy dissipation
rate in (5.54), ε̇, we obtain

ε̇′ ≈ − π2ε̇

480ρ0mbu5~3
(kBT )4. (5.76)

Note that as ~ωn ≪ mbu
2/2, this expression is derived considering only the case where

kBT ≪ mbu
2/2. It can be shown that in the limit kBT ≪ mu2/2 that the density of the

normal component ρn is given by [35]

ρn =
2π2(kBT )4

45mb~
3u5

, (5.77)

so that we can write (5.76) as

ε̇′ ≈ −3ε̇ρn

64ρ0
. (5.78)

Again, this result is a modification of the zero-temperature damping result, with the conden-
sate density replaced by the density of the normal component and the numerical coefficient
decreased. In the limit T ≪ Tc, as with the supersonic results, this result will be small, as
ρn ≪ ρ0.
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We propose a fault tolerant loading scheme to produce an array of fermions in an opti-
cal lattice of the high fidelity required for applications in quantum information processing
and the modelling of strongly correlated systems. A cold reservoir of Fermions plays a
dual role as a source of atoms to be loaded into the lattice via a Raman process and as a
heat bath for sympathetic cooling of lattice atoms. Atoms are initially transferred into an
excited motional state in each lattice site, and then decay to the motional ground state,
creating particle-hole pairs in the reservoir. Atoms transferred into the ground motional
level are no longer coupled back to the reservoir, and doubly occupied sites in the mo-
tional ground state are prevented by Pauli blocking. This scheme has strong conceptual
connections with optical pumping, and can be extended to load high-fidelity patterns of
atoms.

6.1 Introduction

High-precision control of cold atoms in optical lattices has found many potential applications
in recent years, especially in the implementation of quantum information processing and the

†The author of the present thesis acted primarily in an advisory role throughout this work, discussing
the concepts, calculation methods, and scientific conclusions with AG, who performed most of the primary
calculations.
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modelling of strongly correlated condensed matter systems [1]. These applications have been
fuelled by experimental techniques which enable engineering of lattice models with sensitive
control over lattice parameters [2–4], independent control for different internal spin states [5],
and control of interactions between atoms via Feshbach resonances [6, 7].

For high precision applications, initial state preparation will play a key role in addition
to such control of Hamiltonian parameters [8]. Quantum computing applications generally
require an initial register with exactly one atom per lattice site [9], and observation of in-
teresting effects in strongly correlated systems often requires the initial spatial patterns of
atoms or states with precisely chosen filling factors [10].

The first step in preparation of such states is often adiabatically increasing the lattice
potential, making use of repulsive onsite interactions for bosons [11] or Pauli blocking for
fermions [12] to load essentially one atom on each lattice site. However, experimental im-
perfections will generally lead to non-negligible errors in the resulting states. This can be
improved upon by coherently filtering a state with a filling factor initially greater than one
[8, 13], or potentially by schemes involving individual addressing and precise measurement
of the occupation in individual lattice sites [14, 15]. Whilst these methods can, in principle,
produce high fidelity initial states, each of them relies either on the perfect experimental
implementation of a single-shot coherent process or on perfect measurements to avoid defects
in the final state. In this article we propose a fault-tolerant loading scheme in which the state
being prepared always improves in time. The key idea is the addition of a dissipative element
to the loading process, in contrast to previous schemes, which rely on coherent transfer or
perfect measurements. As we will see below, this dissipative element plays a similar role in
our scheme to that of spontaneous emissions in optical pumping.

Motivated by advances in experiments with cold fermions [16–24], our scheme is designed
to produce a regular patterned array of fermions in an optical lattice. Fermions have a nat-
ural advantage in initialising atomic qubit registers because Pauli-blocking prevents doubly-
occupied sites, and most of the techniques illustrated using bosons in quantum computing
proposals apply equally to fermions. Fermionic species are also of special interest in the
simulation of condensed matter systems [25].

The setup for our scheme is illustrated in Fig. 6.1. Atoms in an internal state |b〉 do
not couple to the lattice lasers, and form a cold Fermi reservoir, which will play the dual
role of a source for atoms to transfer into the lattice, and a bath for cooling lattice atoms.
Atoms in the reservoir are coupled into an excited motional level in the lattice (in internal
state |a〉) via a coherent laser-induced Raman process (Fig. 6.1a) [26]. These atoms are then
cooled sympathetically by the reservoir atoms via collisional interactions, and will decay to
the motional ground state together with creation of a particle-hole pair in the reservoir (Fig.
6.1b). This is analogous to the sympathetic cooling process previously presented for a bosonic
reservoir in [27]. Double occupancy in the ground state is prevented by Pauli blocking (Fig.
6.1b), and atoms in the ground state are not coupled back to the reservoir because the Raman
process is far off resonance, so the occupation of the lowest motional level always increases
in time. Additional atoms remaining in excited states at the end of the process can then be
removed by a careful adiabatic detuning and switching off of the coupling lasers (Fig. 6.1c).

Such dissipative transfer of atoms into a desired dark state is strongly reminiscent of
optical pumping, in which atoms are excited by a laser, and undergo spontaneous emissions
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Figure 6.1. Laser-assisted dissipative loading of fermions in an optical lattice:
(a) Atoms are coupled from an external reservoir (in internal state |b〉) into an
excited motional state in the lattice (internal state |a〉 via a Raman process; (b)
These atoms are cooled to the ground motional level via collisional interaction
with the reservoir atoms, and doubly-occupied sites in the ground level are pre-
vented by Pauli blocking; (c) Remaining atoms in the excited motional levels
are removed by carefully detuning the Raman coupling above the Fermi Energy.

into a desired state which does not couple to the laser field. The net result of this is to
transfer entropy from the atomic system into the “reservoir” (the vacuum modes of the
radiation field) in order to produce a single pure electronic state from an initial mixed state.
Here the creation of an excitation in the reservoir replaces the spontaneous emission event,
placing the atom in a state where it is not coupled by the Raman process, and leading to the
production of our final pure state, namely a high fidelity array of one atom in each lattice
site (or a pattern of occupied and unoccupied sites).

We note, in addition, that the purely coherent laser-assisted loading could be used as
a stand-alone technique to load the lattice, and could produce high fidelity states if used
iteratively, together with cooling of the Fermi reservoir. Such cooling would fill holes produced
in the previous loading step, so that Pauli blocking would prevent a net transfer of atoms
from the lattice to the reservoir, thus ensuring that the filling factor in the lattice is improved
in each step.

The detailed analysis of this dissipative loading process is divided into two parts. Coherent
laser-assisted loading of atoms into the entire lattice in a single addressed motional band is
discussed in section 6.2, and the dissipative transfer of atoms to the lowest motional band
is analysed in section 6.3. The combination of these two elements into the overall scheme is
then detailed in section 6.4.
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6.2 Laser-Assisted Loading

We begin by studying the coupling of the atoms forming the reservoir into the optical lattice
via a Raman process, as shown in Fig. 6.2. The atoms in the Reservoir are in an internal state
|b〉, which does not couple to the lasers producing the optical lattice. They form a Fermi gas
containing N atoms with a density n3D = N/V in a volume V , with Fermi energy (~ = 1)

ǫF =
(

6π2n3D

)2/3
/2m, where m is the mass of the atoms. The internal state |b〉 is coupled

to a different internal state |a〉, which is trapped by a deep three dimensional optical lattice
potential Va(x) via a Raman transition.

Our goal is to couple atoms b into the lattice and to achieve an average occupation of
fermions close to one in all lattice sites in one chosen motional band, without coupling to
other motional levels. This should be achieved on a time scale where no atoms are allowed
to tunnel between different lattice sites and no loss of atoms occurs due, e.g., to spontaneous
emission events leading to additional internal states or to inelastic three body collisions,
where two atoms in the reservoir collide with an atom in the lattice and form a molecule. We
note that the latter process is strongly suppressed for fermions due to a mechanism related
to Pauli blocking [28], which is also responsible for the greatly increased lifetime observed for
Fermionic diamers in a two-species mixture [29].

6.2.1 The Model

The total Hamiltonian of this system is given by

H = Ha +Hb +HRC, (6.1)

where the Hamiltonians for the atoms a in the optical lattice and for the atoms b forming
the reservoir are

Ha =

∫

d3xψ̂†
a(x)

(

−∇2

2m
+ Va(x)

)

ψ̂a(x), (6.2)

and

Hb =

∫

d3xψ̂†
b(x)

(

−∇2

2m

)

ψ̂b(x), (6.3)

respectively, in which the anticommuting field operators ψ̂†
i (x) create a fermion in the internal

state i ∈ {a, b} at the position x.

The two internal states are coupled via a Raman process described by the Hamiltonian

HRC =

∫

d3x

[

Ω

2

(

ψ̂†
b(x)ψ̂a(x) + h.c.

)

+ ∆ψ̂†
a(x)ψ̂a(x)

]

, (6.4)

with the Raman detuning ∆ and the effective (two photon) Rabi frequency Ω, where we
have assumed running waves with the same wave vectors for two lasers producing the Raman
coupling.
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Figure 6.2. Reservoir atoms with energy ǫ are resonantly coupled to the
first excited Bloch band of the lattice via a Raman laser with two photon Rabi
frequency Ω. The resonant energy ǫ is experimentally tunable via the Raman
detuning, and the energy separation of the two Bloch bands is denoted by ω. All
frequencies and energies are plotted in arbitrary units with ~ = 1.

We expand the field operators for the free fermions in the reservoir as plane waves and
the field operators for the lattice atoms in terms of Wannier functions,

ψ̂b(x) =
1√
V

∑

k

eikxbk,

ψ̂a(x) =
∑

α,n

wn(x − xα)aα,n, (6.5)

where, b†k creates a reservoir atom with momentum k, a†α,n is the creation operator for an
atom in lattice site α and motional state with n = (nx, ny, nz) in the deep three dimensional
optical lattice, for which wn(x − xα), denotes the corresponding Wannier function.

Inserting into Eqs. (6.2)-(6.4) we obtain

Hb =
∑

k

ǫkb
†
kbk,

Ha =
∑

α,n

(ωn + ∆) a†α,naα,n,

HRC =
Ω

2

∑

k,α,n

(

Rk,ne−ikxαb†kaα,n + h.c.
)

, (6.6)

where the single particle energy of a reservoir atom with momentum k is ǫk = |k|2/2m and
the energy of a lattice atom in the motional state n is given by

ωn =

∫

d3xwn(x)

(

−∇2

2m
+ Va(x)

)

wn(x). (6.7)
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As we are dealing with very deep optical lattices, tunneling between different lattices sites is
strongly suppressed and has thus been neglected. The Raman coupling parameter Rk,n can
be written as

Rk,n =
1√
V

∫

d3xe−ikxwn(x). (6.8)

For our deep optical lattices without tunneling between different sites, the periodic lat-
tice is equivalent to an array of independent microtraps, where each individual trap is well
approximated by a harmonic oscillator. The Wannier functions wn(x − xα) can then be ap-
proximated by harmonic oscillator eigenfunctions φn(x − xα) of the n-th oscillator level in
lattice site α. This approximation allows us to calculate the coupling parameters Rk,n from
the Fermi reservoir to the optical lattice explicitly. For an isotropic three dimensional lattice
(where the frequency ω of each oscillator is given by ω ≈ ωn − ωn−1 and n ≡ (nx + ny + nz))
the couplings to the lowest and first three (degenerate) excited motional states are given by

Rk,0 =
1√
V
π3/4

(

8a3
0

)1/2
e−k2a2

0/2,

Rk,1x,y,z =
√

2a0ikx,y,zRk,0, (6.9)

where a0 =
√

1/mω denotes the size of the harmonic oscillator ground state, and the index
x, y, z labels the coupling to the three degenerate states of the first excited oscillator level.

The characteristics of the coherent loading procedure strongly depend on the interplay
between the (experimentally adjustable) parameters: the detuning ∆ and two photon Rabi
frequency Ω of the lasers producing the Raman coupling, the Fermi energy ǫF and the sep-
aration ω of the oscillator levels. The Raman detuning can be adjusted to address different
states in the Fermi sea and different motional states in the lattice. In the following we write
∆ = −5ω/2 + ǫ to indicate the resonant coupling of reservoir atoms with energy ǫ to the
n = 1 motional states of each lattice site. We note that it is straightforward to address other
motional states in the lattice (e.g. to directly load the lowest level) by adjusting the detuning
∆. However, as we will later use the transfer of the atoms from the reservoir to the lattice as a
first step of an indirect loading of the lowest motional states as described in the introduction,
we choose the transfer to the first excited motional state here. To be able to selectively fill
the first excited oscillator levels, the conditions (ǫF − ǫ) ≪ ω and ǫ ≪ ω (and consequently
ǫF ≪ ω) have to be fulfilled, in order to avoid unwanted coupling to higher excited and to
the lowest motional state, respectively.

6.2.2 The Fast and Slow Loading Regimes

The physics of the loading process allows us to identify two different loading limits: (1) the
“fast loading regime”, where

Ω ≫ ω, ǫF , (6.10)

and (2) the “slow regime”, where

Ω ≪ ω, ǫF . (6.11)
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Below we will see that our goal to selectively fill a certain motional state without coupling
to other states can only be achieved in the slow loading regime, but to obtain more insight
into the physics of the loading dynamics it is instructive to discuss both regimes.

In the fast loading regime, where the Rabi frequency Ω is the largest frequency scale in the
system, the loading is performed in a very short time T ∼ π/Ω ≪ a0/vF , with vF =

√

2ǫF /M
the Fermi velocity, where atoms in the Fermi reservoir do not move significantly during the
loading on a lengthscale given by the size a0 of the harmonic oscillator ground state. The
Wannier modes in the lattice then couple to localized reservoir fermions at each site, and thus
the dynamics for different sites decouple. Given there is at least one fermion in the reservoir
per size a0 of the ground state in each lattice site during the loading, i.e., given the density
of the reservoir atoms

n3D & 1/a3
0, (6.12)

each n = 1 motional state in each lattice site can be filled with at least one atom from the
reservoir by applying a π-pulse ΩT = π. For an optical lattice with ω/2π ∼ 50kHz the
required densities of the Fermi gas are n3D & 3 × 1015cm−3 for 40K and for deeper lattices
the required densities are even higher. The condition (6.12) for the density of the reservoir
can be expressed in terms of energies as

ǫF ≥ (6π2/
√

2)2/3ω. (6.13)

This inequality violates the condition ǫF ≪ ω, which is necessary to be able to selectively
address individual motional states. Consequently, unwanted population will be transferred
to additional motional states in this loading limit, which would have to be carefully removed
after the loading process.

In the slow loading regime, where condition (6.11) is fulfilled, the atoms in the Fermi
reservoir are no longer frozen during the loading process, but are allowed to move with
respect to the lattice during the loading. This is now performed in a time T ≫ λ/2vF , where
λ/2 is the lattice spacing. Consequently, the density condition (6.12) can be relaxed to

n3D

(

λ

2

)3

& 1, (6.14)

i.e., we only need one atom in the reservoir per lattice site to be able to efficiently fill the
lattice. For typical experimental parameters λ ∼ 800nm for 40K this results in the condition
n3D & 1013cm−3, which has already been achieved in current experiments (e.g. [30]). The
density condition (6.14) expressed in terms of energies now reads

ǫF &

(

6

π

)2/3

ωR, (6.15)

with ωR = 2π2/mλ2 the recoil frequency. As ωR ≪ ω for a deep optical lattice, the condition
ǫF ≪ ω can be fulfilled in this loading limit, and as Ω ≪ ω, individual motional states in
each site can be addressed. In the following we will investigate these two extreme limits and
the intermediate regime in detail.
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6.2.3 Analysis of the Loading Regimes

Fast Loading Regime

In this regime, where the motion of the atoms in the reservoir is frozen on the scale a0 during
the transfer, the physics is essentially an on-site coupling and transfer. We thus find it useful
to expand the modes in the reservoir in terms of localized Wannier functions corresponding
to the lattice. Such an expansion of the reservoir modes arises naturally from the definition
of the matrix elements Rk,ne−ikxα (Eq. (6.8)) and allows us to write

HRC =
Ω

2

∑

α,n

(

B†
α,naα,n + h.c.

)

, (6.16)

where Bα,n =
∑

kRk,nbke−ikxα is the mode corresponding to the Wannier function wn(x −
xα). Note that these collective modes fulfill

{Bα,n, B
†
β,m} = δα,βδm,n, (6.17)

(where δ denotes the Kronecker Delta), i.e., modes corresponding to different lattice sites or
to different motional states are orthogonal. Furthermore, in the fast regime we can neglect
the first two terms Ha and Hb in the Hamiltonian (6.1) due to the condition Eq. (6.10) during
the loading time T ∼ π/Ω and the total Hamiltonian can be approximated by H ≈ HRC.
The sites thus decouple, and the loading process at each site proceeds independently, but
with the same Rabi frequency Ω for the coupling.

We are interested in the time evolution of the matrix elements of the single particle
density matrix, i.e., 〈a†α,naβ,m〉, 〈a†α,nBβ,m〉 and 〈B†

α,nBβ,m〉. In the fast loading regime, where
H ≈ HRC, the respective matrix elements can be calculated analytically from the Schrödinger
equation with the Hamiltonian Eq. (6.16), and we find for states, where Ω/2 ≫ |(n − 1)ω|,
i.e., t . T ≪ a0/vF

〈a†α,naβ,m(t)〉 = δα,βδn,m sin2 Ω

2
t, (6.18)

and

〈B†
α,nBβ,m(t)〉 = δα,βδn,m cos2

Ω

2
t, (6.19)

for the time evolution of the occupation of the modes in the lattice and in the Fermi sea,
respectively. These expressions assume that the lattice modes are initially empty and the
corresponding modes in the Fermi sea are initially filled. If the Fermi sea is initially filled up
to ǫF , then this assumption is fulfilled for any α and n for which that each mode Bα,n contains
contributions only from states with energy below ǫF . Thus, in the fast loading regime the
occupation in the lowest and first excited motional state undergoes Rabi-oscillations at a
Rabi frequency Ω, and provided the density is sufficiently high, the lattice can be efficiently
filled by applying a π-pulse,

ΩT ∼ π, (6.20)
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Figure 6.3. Numerical results in the fast loading limit. (a) The time evolution
of the occupation of the lowest (n = 0) and first excited motional (n = 1) levels
against time in dimensionless units. Note that these lines are indistinguishable.
(b) 1−Fn(t = π/Ω) after applying a π-pulse, for the lowest (n = 0, dotted line)
and the first excited (n = 1, solid line) motional state, as a function of the
dimensionless density n1Da0. Parameters used: N=201 particles in the Fermi
sea, M=5 lattice sites, Ω = 17.8ǫF , ∆ = −3ω/2 and in (a) ω = 0.1 ǫF , whereas
in (b) ω is varied.

with loading time T . Atoms will also be coupled to other motional states in the lattice with
the resulting filling factors depending on the density of the reservoir gas and the actual value
of the Rabi frequency Ω.

To model the full loading dynamics we use numerical simulations of the dynamics gener-
ated by the Hamiltonian (6.1). In these simulations we only consider the lowest two motional
states for simplicity, but all results are easily extended to more motional states. Also, the
simulations are one dimensional, which means that the excited oscillator state with n = 1 is
no longer degenerate. Because couplings to motional excitations in different spatial directions
are independent, such simulations are representative for loading into each of the three 3D
modes.

In Fig. 6.3a we show the results of our numerical simulations of the complete system
described by the Hamiltonian Eq. (6.1) in the fast loading limit. In the upper and lower part



84 Publication: Dissipative Preparation of Atomic Quantum Registers

we plot the fidelity of the lowest and first excited Bloch band,

Fm(t) ≡
∑

α

〈a†α,maα,m(t)〉
M

, (6.21)

with M the number of lattice sites, as a function of time in dimensionless units tǫF . We
refer to this quantity as a fidelity for the final state, because F0 gives the average filling
factor in the lowest band, and thus the probability that we obtain exactly one fermion per
site in the lowest band. The numerical results are in excellent agreement with the analytical
calculations (Eq. (6.18)), as we find oscillations of the fidelity in both Bloch bands between
zero and Fm(t) & 1 − 10−4 occur with a Rabi frequency Ω. In Fig. 6.3b we analyze the
scaling of the fidelity in the two bands with the dimensionless density n3Da

3
0 (i.e., with

n1Da0 =
√

2ǫF /ω/π in our one dimensional simulations, with n1D the one dimensional density
of the reservoir gas). As expected, the fidelity after a π pulse, i.e., Fm(t = π/Ω) increases
with the density, and high fidelity states can be achieved for large densities n1Da0 & 1. In
this and all numerical simulations below we have checked that the results are independent
of the quantization volume, which is much smaller than in a real experiment, due to the
comparably small number of particles in the simulations.

In Fig. 6.4 we show how the loading dynamics change when approaching the intermediate
regime from the fast limit, i.e. the scaling of the fidelity with the Rabi frequency Ω. In
Fig. 6.4a we show the qualitative behaviour of the loading dynamics for typical parameters,
in Fig. 6.4b the scaling of the fidelity Fm(t = π/Ω), m = 0, 1 is shown as a function of
the Rabi frequency. These numerical simulations show that the Bloch bands still cannot be
individually addressed, and the fidelity becomes worse if the Rabi frequency is decreased.

Thus, our chosen motional state can, in principle, be efficiently filled in this regime on
sufficiently fast timescales. However, the requirements on the density are difficult to achieve
experimentally, and occupation in other motional states cannot be avoided. As a result in
this regime we obtain no significant advantage over traditional loading mechanisms such as
adiabatically turning on the lattice. In the next section we will investigate the slow loading
regime. In this limit these problems do not exist and we are able to selectively load a single
energy level efficiently.

Slow Loading Regime

In this regime, transport is significant during the loading, and the system dynamics are
described by the complete Hamiltonian (6.1). As the reservoir atoms move between Wannier
modes during the loading process, it is now more convenient to directly use the momentum
representation Eq. (6.6) to express the coupling Hamiltonian.

From Eq. (6.6) one can see that each lattice site α and each motional state n is coupled
to many momentum modes bk in the reservoir. However, as Ω ≪ ǫF , effectively only a subset
of momentum modes with energies centered around the resonant frequency ǫ = ∆ + 3ω/2
is coupled to the lattice, whereas the remaining states are far detuned and the transfer is
suppressed. The width of this effective coupling range depends on both the Rabi frequency
Ω and the matrix elements Rk,n, and an upper bound for the width of this range is given by
the Rabi frequency Ω.
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Figure 6.4. Numerical results for Ω approaching an intermediate regime from
the fast loading limit. (a) The time evolution of the occupation of the lowest
(n = 0, dotted line) and first excited (n = 1, solid line) motional state against
time in dimensionless units, again for N = 101, M = 5 and for a typical set
of parameters Ω = 0.72ǫF , ∆ = −3ω/2 and n1Da0 ∼ 2. (b) The occupation
number for the lowest (n = 0, dotted line) and first excited (n = 1, solid line)
after applying a π-pulse versus the dimensionless Rabi frequency Ω.

It is convenient to rewrite the coupling Hamiltonian of Eq. (6.6) as

HRC =
∑

k,n

[

Rk,nb
†
k

(

∑

α

e−ikxαaα,n

)

+ h.c.

]

, (6.22)

from which we can see that each momentum mode in the reservoir couples to a collective
mode

∑

α eiϕk,αaα,n in the lattice. To fill the lattice it is necessary that the range of states
in the reservoir couples to at least M orthogonal collective modes in the lattice. Writing the
phase as

kxα = π

√

ǫF
ωR

(

k

kF

xα

λ/2

)

, (6.23)

we see that it is necessary to couple a range of states with width of at least kF

√

ωR/ǫF in
momentum space to the lattice to fill M lattice sites. In the slow regime, where Ω ≪ ǫF and
furthermore ωR . ǫF (from the density condition (6.15), the recoil frequency will typically
exceed the Rabi frequency, i.e., Ω < ωR. As only states within a range ǫ± Ω are coupled to
the lattice, the lattice cannot be filled efficiently for a constant ǫ.
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Thus to achieve a high population in the desired motional state of each lattice site we
must sweep the resonant frequency ǫ through a range of at least ωR, scanning through many
modes. Such a procedure also has the advantage that as we only couple to a narrow range in
the Fermi sea at any one time, the reverse process of transferring particles from the lattice to
the Fermi sea will be suppressed by Pauli blocking. In our numerical simulations we linearly
sweep the detuning from ǫ = 0 to ǫ = ǫF in a loading time T .

We are interested in the time evolution of the matrix elements 〈a†α,naβ,m〉, 〈a†α,nbk〉, and

〈b†kbk′〉 of the single particle density matrix. For a system described by a quadratic Hamil-
tonian the equations of motion for the second order correlation functions can be obtained
from the (linear) Heisenberg equations (see Appendix 6.A). As the system is described by
the quadratic Hamiltonian (6.1) and (6.6), the linear Heisenberg equations for the operators
aα,n and bk have the simple form (again only considering the lowest two motional states in a
one dimensional system)

ȧα,1 = −i
Ω

2

∑

q

R∗
q,1e

ikxαbq − iǫaα,1,

ḃk = −i
Ω

2

∑

µ,n

Rk,ne−ikxµaµ,n − iǫkbk,

ȧα,0 = −i
Ω

2

∑

q

R∗
q,0e

ikxµbq + i(ω − ǫ)aα,0, (6.24)

which can be used to efficiently calculate the time evolution of the desired functions numer-
ically. Note that in an isotropic three dimensional lattice again all three degenerate n = 1
states will be loaded by sweeping the resonant frequency ǫ through the Fermi sea. In practice
it is also possible to selectively load only a single atom in each lattice site by shifting two
excited motional states out of resonance, choosing an anisotropic lattice with significantly
higher oscillator frequencies in two dimensions.

In Fig. 6.5a we show numerical results for the time evolution of the occupation number
in the first (upper plot) and in the lowest (lower plot) Bloch band as a function of time in
dimensionless units. Here, Ω is slowly switched on to reduce the additional holes introduced
in the Fermi sea by coupling atoms into states above ǫF . This is an example of many possible
optimisations to produce high filling, and we find the final F1 > 0.99, in a time of the order
of 10 milliseconds (with ω ∼ 2π× 100 kHz). In Fig. 6.5b the occupation of the two motional
levels after a loading sweep is plotted as a function of the sweep time T . These results are
not optimised (Ω is held constant, and we sweep ǫ from ǫF → 0), but still produce fidelities
F1 > 0.95 on a timescale of a few milliseconds, and we see that the average filling factor
increases with the loading time.

It is important to note that whilst high fidelities can be obtained by optimising the
parameters of the sweep, it is not necessary to achieve high filling during this sweep in order
to produce high fidelities for the overall loading scheme. In the full scheme with decay of
atoms to the ground motional state included, the upper band need never be completely filled
at any one time, and removal of atoms via the decay process will lead to further atoms being
coupled into the lattice in the upper motional band.

Due to the condition Ω ≪ ω, unwanted coupling to other Bloch bands can be avoided in
this regime, by choosing ǫ≪ ω (c.f. Fig. 6.2), as the coupling is then sufficiently far detuned
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Figure 6.5. Numerical simulation of the loading dynamics in the “slow load-
ing” limit. (a) Occupation of the lowest and first excited motional bands as
a function of time, showing attainment of a high fidelity in the excited band.
The resonant frequency ǫ is swept from ǫF → 0, and Ω is ramped from 0 to
0.45ǫF , reaching that value at tǫF = 500. Parameters used: N = 81 particles
in the Fermi sea, M = 5 lattice sites, ω = 5ǫF and n1Dλ/2 = 3.4. (b) The final
occupation number after a loading sweep with constant Ω, and ǫ ramped from
ǫF → 0, versus the dimensionless sweep time ǫFT . Parameters used: N = 81,
M = 5, Ω = 0.9ǫF and ω = 10ǫF and n1Dλ/2 = 1.7.

as demonstrated in the lower two plots of Fig. 6.5. The scaling of the unwanted coupling to
the lower band is shown in Fig. 6.6a, where we plot the occupation of the two Bloch bands
after a linear sweep with ǫFT = 300 against the ratio ω/ǫF .

In Fig. 6.6b we show the numerical results when approaching the intermediate regime,
i.e, the scaling of the occupation of the two bands after the linear sweep with the Rabi
frequency. We find that also here high occupation of the first Bloch band can be achieved,
but by increasing the Rabi frequency the unwanted coupling to the lower band also increases,
as can be seen in the lower plot of the figure.

In summary, in the “slow loading” regime high fidelity loading of the n = 1 motional level
can be achieved on timescales much shorter than those on which atoms are lost from the
lattice by sweeping the resonant coupling frequency ǫ through the Fermi sea. This loading
mechanism gives us the significant advantage over simple loading techniques such as adiabat-
ically increasing the lattice depth that we can address a particular energy level in the lattice,
whilst not coupling to levels that are sufficiently far detuned. This property can also be used
to load patterns of atoms, because if a superlattice is applied, then the energy of certain
lattice sites can be shifted out of resonance with the Raman process, so that no atoms are
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Figure 6.6. In (a) we show the occupation of the lowest and first excited
Bloch band after a linear loading sweep from ǫ = ǫF → 0 with ǫFT = 300
versus the band separation ω in dimensionless units. Part (b) shows the loading
dynamics approaching an intermediate regime from the slow regime: We plot
the occupation of the lowest and first excited Bloch band after a linear loading
sweep, with ǫFT = 300 against Ω. Parameters used: N=81 particles in the
Fermi Sea, M=5 lattice sites and n1Dλ/2 = 1.7, in (a) Ω = 0.9ǫF and in (b)
ω = 10ǫF .

coupled into these sites.

In the next section we will discuss the cooling of atoms in higher motional levels to the
ground state, which removes the atoms from the motional state being coupled from the
reservoir. Together with Pauli blocking of modes in the lattice, this allows us to make the
overall loading process fault-tolerant. As an additional remark, though, we note that this
laser-assisted loading of a selected energy level in the lattice could be used as a stand-alone
technique to load the lattice, e.g., coupling atoms directly into the ground motional state.
(In order to load an excited motional state in this manner, interaction of atoms in the lattice
and atoms in the reservoir must be made very small on the timescale of the loading process,
e.g., by using a Feshbach resonance, in order to avoid decay of the atoms into the ground
state). This process on its own is not as robust as the procedure we obtain by including
a dissipative element in the loading scheme, which will be discussed in the next section.
However, reasonably high fidelities could still be obtained with this method alone, especially
if the method was applied iteratively, cooling the Fermi reservoir between each two steps.
Net transfer of atoms already in the lattice back to the reservoir would be prevented in each
step by Pauli blocking in the filled Fermi sea. Note again that as with the full dissipative
loading scheme, a single sweep would also not need to completely fill the upper band. The
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dissipative element discussed in the next section allows for the production of an arbitrarily
high-fidelity state without the requirement of iteratively cooling the Fermi reservoir.

6.3 Dissipative Transfer: Cooling Atoms to the Lowest Band

The second stage of the loading process is cooling atoms in an excited motional state to the
ground state via interaction with the reservoir gas. This is closely related to the cooling
process with a bosonic reservoir in [27]. The external gas here plays the role of an effective
T = 0 heat bath for the lattice atoms, and ground state cooling is achieved on timescales
much shorter than atoms are lost from the lattice.

We consider the coupling of lattice atoms a via a collisional interaction to the atoms b in
the reservoir so that the system is described by the Hamiltonian

H = Ha +Hb +Hint, (6.25)

where the collisional interaction, Hint, between two fermions is the usual density-density
interaction

Hint = g

∫

d3xψ̂†
a(x)ψ̂a(x)ψ̂†

b(x)ψ̂b(x), (6.26)

with g = 4πas/m and as the s-wave scattering length. Expanding the field operators as
described in the previous section we obtain

Hint =
∑

k,k′

α,n,n′

gk,k′

α,n,n′b
†
kbk′a†α,naα,n′ , (6.27)

which is local in each lattice site because of the small overlap between Wannier functions for
neighboring sites in a deep lattice, with

gk,k′

α,n,n′ =
g

V
eixα(k′−k)

∫

d3xeix(k′−k)wn(x)wn′(x). (6.28)

Each gk,k′

α,n,n′ describes a scattering process in which a particle-hole pair is created in the
reservoir by scattering an atom from momentum state k → k′, combined with the transition
of an atom at site α from motional state n → n′.

If the transition in the lattice is from a higher energy mode to a lower energy mode, this
corresponds to a cooling transition, whereas the reverse process constitutes heating. As the
initial temperature of the reservoir kBT ≪ ǫF ≪ ω, the heating processes will be, at least
initially, insignificant, as few reservoir atoms will exist with sufficient energy to excite an
atom in the lattice. If the number of atoms in the reservoir is large compared to the number
of sites in the lattice (N ≫ M), then the rate of heating processes due to interaction with
previously excited atoms will be small compared to cooling processes due to interaction with
atoms remaining below the Fermi energy ǫF . Because the cooling processes in different lattice
sites couple to different modes, and therefore are incoherent, the reservoir can then be treated
throughout the process approximately as a T = 0 bath.
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This can be further enhanced in two ways. Firstly, in an experiment in which the reser-
voir gas is confined in a weak harmonic trap, particles with sufficiently large energies can
be allowed to escape from the trap. The large separation of the Bloch band ω, and corre-
sponding excitation energy will then cause many excited reservoir atoms to leave the trap,
providing effective evaporative cooling during the process. Secondly, the lattice depth could
be modulated during the experiment, so that the excitation energy changes, decreasing the
probability that atoms are heated by previously excited reservoir atoms.

The cooling dynamics are then described in the Born-Markov approximation by a Master
equation for the reduced density operator ρ for the atoms in the lattice. If we consider
coupling of atoms from the first excited motional levels n ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} to the
ground state, the resulting master equation (derived in Appendix 6.B) is

ρ̇ =
∑

α,β,n

Γα,β,n

2

(

2Aα,nρA
†
β,n −A†

α,nAβ,nρ− ρA†
α,nAβ,n

)

, (6.29)

with

Γα,β,n =2π
∑

k,k′

k′>k

gk,k′

α,1,0g
k,k′

β,1,0

∗
δ (ω − ǫk + ǫk′) ≈ g2n3Dm

πa0

√
2

2

3e
δα,β . (6.30)

Here, the jump operator Aα,n = a†α,0aα,n describes the cooling of a lattice atom in site α
from the first excited motional level n to the ground state. These results are obtained by
calculating the integral over momenta in the Fermi sea to lowest order in ǫF /ω.

The approximation in the second line of Eq. (6.30), in which neglect off diagonal terms
α 6= β amounts to the approximation that the coherence length of the Fermi reservoir is much
shorter than the lattice spacing. This is true provided that the wavelength of the emitted
particle excitation,

√

2π2/(mω), is much shorter than the lattice spacing, i.e., ωR/ω ≪ 1.
This is consistent with the previous approximation that the lattice is so deep that we can
neglect tunnelling between neighbouring sites. This can be seen directly when these off-
diagonal terms are calculated, as for large ωR/ω they decay (to lowest order in ǫF ≪ ω)
as

Γα,β,n ∼ sin(π
√

ω/ωR|α− β|)
π
√

ω/ωR|α− β|
. (6.31)

This effect is analogous to the spontaneous emission of two excited atoms which are separated
spatially by more than one wavelength of the photons they emit. In this case, the atoms can
be treated as coupling to two independent reservoirs, and effects of super- and sub-radiance
do not play a role.

For typical experimental values n3D ∼ 1014cm−3 and as = 174aB, for 40K as given in [30],
with the Bohr radius aB and a deep optical lattice with ω/2π ∼ 100kHz, we find a decay rate
Γ/2π ∼ 3.6kHz. Thus, cooling can again be achieved on sufficiently short time scales, as this
rate is much faster than typical loss rates of the lattice atoms. For example, we can estimate
the rate of the three-body loss processes described in section 6.2 to be of the order of ten
seconds [28]. Note that this value of the decay rate can be made even larger e.g. by tuning
the scattering length as via a Feshbach resonance, as Γ ∝ a2

s, by increasing the density of the
external gas or by increasing the lattice depth.
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In summary we have shown that for a cold reservoir gas with sufficiently many atoms
fast ground state cooling of lattice atoms can be achieved with the dissipative coupling of the
lattice to the reservoir. The necessary experimental parameters have already been achieved in
real experiments, and the cooling rates are tunable via the scattering length and the density
of the reservoir gas.

6.4 Combined Process

The combination of the cooling process with laser-assisted loading in the limit Ω ≪ ω, ǫF will
give a final high-fidelity state in the lowest motional level. The primary role of the dissipative
element is to transfer atoms into a state in which they are not coupled back to the Fermi
reservoir, which is made possible because of the selective addressing of the n = 1 motional
levels in this regime. Multiple occupation of a single site in the lowest motional state is
forbidden due to Pauli-blocking, and thus the lowest motional state is monotonically filled,
with the filling factor and hence the fidelity of the state being prepared always improving
in time. Again, patterns of atoms may be loaded in the lowest state by using a superlattice
to shift the energy of the n = 1 motional level out of resonance with the Raman process
in particular sites, preventing atoms from being coupled from the Fermi reservoir into those
sites. This energy shift will also further suppress tunnelling of atoms from neighbouring sites.

If the laser-assisted loading and the cooling are carried out separately, each being per-
formed after the other in iterative steps, then from the analysis of sections 6.2 and 6.3 we
see that an arbitrarily high fidelity final state can be obtained. This pulsed scheme gives
us an upper bound on the timescale for loading a state of given fidelity, which corresponds
to the combination of the two individual timescales for laser-assisted loading and cooling.
Provided that the number of atoms in the reservoir is much larger than the number of lattice
sites to be filled (N ≫ M), and the Markov approximation made in describing the cooling
dynamics is valid, then there will be no adverse effects arising from the loading and cooling
processes sharing the same reservoir. Thus, we can combine the two processes into a contin-
uous scheme, which in practice will proceed much faster, as the continuous evacuation of the
excited band due to cooling will also speed up the loading process.

At the end of the loading process we must still ensure that the finite occupation of the
excited motional levels is properly removed. This can be achieved by detuning the resonant
frequency for the Raman coupling above the Fermi energy after the loading sweep, coupling
the remaining atoms to empty states above the Fermi sea, and then switching off the coupling
adiabatically.

The dynamics of the pulsed process are already well understood from the analysis of
sections 6.2 and 6.3. To illustrate the dynamics of the combined continuous process, we
again perform numerical simulations, in which we compute the matrix elements of the reduced
system density operator. The dynamics of the total system including both the laser coupling
and the collisional interaction between the optical lattice and the Fermi reservoir are described
by the full Hamiltonian

H = Ha +Hb +HRC +Hint, (6.32)
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Figure 6.7. The occupation of (a) the lowest (n = 0) and (b) first excited
(n = 1) motional level for the continuous combination of coherent loading in the
slow regime and dissipative cooling. The resonant frequency is swept from ǫ = 0
to ǫ = 4ǫF and the Raman coupling is switched off adiabatically. Parameters
used: N = 101, M = 5, Ω/2 = 0.45ǫF , n1Dλ/2 = 1.4, ω = 10ǫF and Γ = 0.1ǫF .

and in the Markov approximation with respect to the cooling process, the matrix elements
of the system density operator can now be calculated from the Master equation (6.29) as
shown in Appendix 6.C. In order to obtain a closed set of differential equations which can be
integrated numerically, we use an approximation based on Wick’s theorem to factorize fourth
order correlation functions into second order correlation functions (see appendix 6.C) [31].

In Fig. 6.7 we plot the time evolution of the occupation of the two motional levels in the
continuous regime as a function of time. In Fig. 6.7a we see that we indeed achieve a high
occupation of the lowest motional level from the combination of laser-assisted coupling to
the excited motional level in the regime Ω ≪ ω, ǫF and cooling to the ground state. For the
typical values given in the figure caption, the loading time T for a state with F0 ∼ 1−10−4 is
again on the order of a few milliseconds. This required loading time can be further decreased
by tuning Γ via the density of the external gas or the strength of the collisional interaction
between atoms in the lattice and atoms in the reservoir.

From Fig. 6.7b we see that as we fill the lower motional level, the filling in the upper level
is depleted, and as we continue to tune the lasers so that this level is coupled to states in the
reservoir above the Fermi energy εF , the remaining population in this level is removed.

As a final remark we note that such a procedure could, in principle, also be applied
to bosons. However, without Pauli blocking to prevent double-occupation of the ground
motional level, we rely on the onsite collisional shift U to make the Raman coupling of an
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atom from the reservoir into an excited state off-resonant if an atom already exists in the
ground motional state. Second order processes occurring at a rate ∼ ΩΓ/U can still create
double occupation, so we require Ω,Γ ≪ U , and the advantage of true fault tolerance is not
present as it is for fermions.

6.5 Summary

In conclusion, we have shown that the combination of laser-assisted loading of atoms into
an excited motional state and the cooling of atoms from this motional state to the ground
level gives a fault-tolerant loading scheme to produce high fidelity registers of fermions in an
optical lattices with one atom per lattice site. Application of a superlattice allows this to
be extended to generalised patterns of atoms, and all of these processes can be completed
on timescales much faster than those on which atoms can be lost from the lattice. The
advantage of this scheme is that the dissipative transitions in the lattice, similar to optical
pumping, gives us a process in which the fidelity of the final state (in the lowest motional
level) improves monotonically in time.
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6.A Derivation of the Heisenberg Equations for Coherent Load-

ing

Consider a system, which is described by a Hamiltonian quadratic in a set of operators
~O = (O1,O2, . . . ,Od). Then the Heisenberg equations of motion can be written as

~̇O(t) = M ~O(t), (6.33)

with a matrix M , and formal solution ~O(t) = U ~O(0) with U = exp(Mt). By choosing the
initial conditions Oj(0) = δj,α we can construct the full time evolution matrix U(t) by solving
Eqs. (6.33), as

Ui,α(t) ≡
∑

j

Ui,j(t)Oj(0) = Oi(t). (6.34)
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The time evolution of the second order correlation functions is then easily calculated as

〈O†
iOj(t)〉 =

〈

∑

α,β

U∗
i,j(t)Uj,β(t)O†

αOβ(0)

〉

. (6.35)

6.B Derivation of the Master Equation

In the interaction picture, and after making the Born-Markov approximation, the master
equation for the reduced density operator ρ of a system which interacts with a heat bath via
an interaction Hamiltonian Hint can be written as (see e.g. [32])

ρ̇(t) = −
∫ t

0
dτTrB

{[

Hint(t), [Hint(t − τ), ρ(t) ⊗ ρB]
]}

. (6.36)

Here, ρB is the bath density operator, and TrB denotes the trace over the bath, which is repre-
sented by the cold Fermi reservoir in our setup. The interaction between the Fermi reservoir
and the optical lattice system is given by the Hamiltonian (6.27), and in the interaction
picture with respect to the internal dynamics in the lattice and in the Fermi reservoir,

Hint(t) =
∑

k,k′

α,n,n′

gk,k′

α,n,n′b
†
kbk′a†α,naα,n′e−i(ǫk−ǫk′+ω(n−n′))t. (6.37)

As the number of atoms in the reservoir exceeds the number of lattice sites, N ≫M , and
as in addition the the bath has temperature T ∼ 0, the reservoir will approximately remain
in its ground state, i.e., the filled Fermi sea throughout the cooling process, and the bath
correlation functions are approximately given by

〈b†k1
bk′

1
b†k2

bk′
2
〉 ≈ δk1,k′

1
δk2,k′

2
+ δk1,k′

2
δk′

1,k2
, (6.38)

where 〈 · 〉 = TrB{ · ρB}.
For t much larger than the correlation time in the bath we can let the upper limit of the

integral in Eq. (6.36) go to ∞, and writing
∫∞
0 ei(ǫk−ǫk′+ω(n−n′))τ → δ(ǫk − ǫk′ + ω(n− n′)),

we find

ρ̇ =
∑

α,β,n

Γα,β,n

2

(

2Aα,nρA
†
β,n −A†

α,nAβ,nρ− ρA†
α,nAβ,n

)

, (6.39)

with the jump operator Aα,n = a†α,0aα,n,

Γα,β,n =2π
∑

k,k′

k′>k

gk,k′

α,1,0g
k,k′

β,1,0

∗
δ (ω − ǫk + ǫk′) , (6.40)

and where we note that
∑

k,k′ g
k,k′

α,n,0g
k,k′

α,n′,0 = 0 for n 6= n′. The rate Γα,β,n rapidly decays with
|α − β|, and for each of the three degenerate excited states n ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
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the slowest rate of this decay is found in the direction of n. In the harmonic oscillator
approximation we find (for the direction with the slowest decay)

Γα,β ∼ g2n3Dm

πa0

√
2

2

3e
F (π

√

ω

ωR
|α− β|), (6.41)

to first order in ǫF /ω, with the function

F (ξ) = 3
2ξ cos ξ + (ξ2 − 2) sin ξ

ξ3
. (6.42)

For large ξ this result simplifies to the sinc function in Eq. (6.31). For a deep optical lattice

where ω ≫ ωR, F (π
√

ω
ωR

|α − β|) ≈ δα,β , and we end up with a standard quantum optical

master equation (see e.g. [32]), describing the decay of an excited lattice atom from each of
the three degenerate n = 1 states to the n = 0 level at a rate Γ.

6.C Equations of motion for Combined Dynamics

The time evolution of the expectation value of an arbitrary system operator Ô can be calcu-
lated from the master equation (6.29) and Eq. (6.30) as

〈 ˙̂O〉 =i〈[Hsys, Ô]〉 +
Γ

2

∑

α,n

(

2〈A†
α,nÔAα,n〉 − 〈{Ô, A†

α,nAα,n}〉
)

, (6.43)

where Hsys = Ha +Hb +HRC and Γ ≡ Γα,α,1. We are interested in the time evolution of the
matrix elements of the single particle density matrix, which can be calculated from Eq. (6.43)
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as

d
dt〈a

†
α,0aβ,0〉 = i

Ω

2

∑

q

(

Rq,α,0〈b†qaβ,0〉 −R∗
q,β,0〈a†α,0bq〉

)

+
Γ

2

(

2〈a†α,1aα,1〉δα,β − 〈a†α,1a
†
α,0aβ,0aα,1〉 − 〈a†β,1a

†
α,0aβ,0aβ,1〉

)

d
dt〈a

†
α,1aβ,1〉 = i

Ω

2

∑

q

(

Rq,α,1〈b†qaβ,1〉 −R∗
q,β,1〈a†α,1bq〉

)

−Γ

2

(

2〈a†α,1aβ,1〉 − 〈a†α,1a
†
β,0aβ,0aβ,1〉 − 〈a†α,1a

†
α,0aα,0aβ,1〉

)

d
dt〈a

†
α,1aβ,0〉 = i(ω − ǫ)〈a†α,1aβ,0〉 + i

Ω

2

∑

q

(

Rq,α,1〈b†qaβ,0〉 −R∗
q,β,0〈a†α,1bq〉

)

+
Γ

2

(

−〈a†α,1aβ,0〉 − 〈a†α,1a
†
β,1aβ,1aβ,0〉 − 〈a†α,1a

†
α,0aα,0aβ,0〉

)

d
dt〈a

†
α,1bk〉 = i(ǫ− ǫk)〈a†α,1bk〉 + i

Ω

2

(

∑

q

Rq,α,1〈b†qbk〉 −
∑

µ

Rk,µ,1〈a†α,1aµ,1〉
)

−Γ

2

(

〈a†α,1bk〉 + 〈a†α,1a
†
α,0aα,0bk〉

)

d
dt〈a

†
α,0bk〉 = i(ǫ− ǫk − ω)〈a†α,0bk〉 + i

Ω

2

(

∑

q

Rq,α,0〈b†qbk〉 −
∑

µ

Rk,µ,0〈a†α,0aµ,0〉
)

−Γ

2
〈a†α,1a

†
α,0bkaα,1〉

d
dt〈b

†
kbk′〉 = i(ǫk − ǫk′ − ω)〈b†kbk′〉 + i

Ω

2

∑

µ,n

(

−Rk,µ,n〈b†kaµ,n〉 −R∗
k,µ,n〈a†µ,nbk′〉

)

.

(6.44)

A closed set of equations can be obtained from Eqs. (6.44) by using Wick’s theorem to
factorize fourth order correlation functions into products of second order correlation functions
according to

〈ĉ1ĉ2ĉ4ĉ4〉 = 〈ĉ1ĉ2〉〈ĉ3ĉ4〉 − 〈ĉ1ĉ3〉〈ĉ2ĉ4〉 + 〈ĉ1ĉ4〉〈ĉ2ĉ3〉,

for fermionic operators ĉi ∈ {a†α,n, aα,n, b
†
k, bk} (see e.g. [33]).
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Chapter 7

Exact Calculations for 1D Many-Body Systems

using Vidal’s Algorithm

7.1 Time-Dependent Calculations for 1D Systems

The simulation of many-body quantum systems beyond very small sizes is, in general, a very
difficult task due to the number of parameters required to represent the associated Hilbert
space. This can be clearly seen in the case of the lattice models describing the dynamics of
atoms in optical lattices. For the Hubbard model with M lattice sites, N↑ spin-up fermions,
and N↓ spin-down fermions, the dimension of the associated Hilbert space is

WH(M,N↑, N↓) =
(M !)2

(M −N↑)!N↑! (M −N↓)!N↓!
, (7.1)

and for the Bose-Hubbard Model with M lattice sites and N Bosons, the corresponding
Hilbert space has dimension1

WBH(M,N) =
(M +N − 1)!

(M − 1)!N !
. (7.2)

For example, typical systems with 12 lattice sites and 12 particles result in WH(12, 6, 6) =
853 776, and WBH(12, 12) = 1 352 078. To treat systems of this size, large sparse matrices
must be used to represent the Hamiltonian, and long computing times can be expected,
dependent somewhat on the available hardware. For yet larger systems, these values become
completely prohibitive. For example, with 16 particles in 16 lattice sites, WH(16, 8, 8) =
165 636 900, and WBH(16, 16) = 300 540 195.

Over the past fifteen years, there have been many algorithmic developments that have
made possible the calculation of ground states of 1D many-body systems without needing to
store coefficients of the entire Hilbert space. This is primarily achieved either by sampling in
Quantum Monte-Carlo methods, or by careful reduction of the Hilbert space to those basis
states that contribute significantly to the ground state, as is performed in Density Matrix

1The dimension of the Hilbert space for the Bose-Hubbard model arises in combinatorics from sampling N
sites (on which to place the atoms) from M sites with replacement.
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Renormalisation Group (DMRG) methods. Both methods have been extremely successful in
computing ground states of large 1D systems, and in a series of major advances over the past
two years, algorithms of the latter type have been successfully generalised to time-dependent
studies of 1D systems.

DMRG methods, which were first invented by White in 1992 [1], are extensively reviewed
in [2]. Essentially, the algorithms were originally designed to find the ground state of a large
1D system based on the principle of growing the size of the system, whilst at each point in the
growth forming a new reduced basis for the Hilbert space, retaining only those states consid-
ered to be the most significant. Beginning in 2002, there were several attempts to generalise
basic DMRG methods to time dependent calculations. Initially these involved performing
DMRG calculations to find the ground states for various Hamiltonian parameters, and using
these calculations to pre-determine a truncated Hilbert space on which time evolution could
be calculated (for more information see 9.2). The major step forward from this, first made by
Vidal in 2003 [3] was to produce a method in which the truncated Hilbert space was modified
at each time step so that the representation of the state satisfied some criteria of optimal-
ity. This method effectively provides near-exact integration of the many body Schrödinger
equation in 1D on an adaptively decimated Hilbert space, under the restriction that the
Hamiltonian couples at most neighbouring sites, and provided that the state as it evolves
can always be represented with a sufficiently small number of retained basis states (such
states are referred to as “slightly entangled”, which will be explained in section 7.2). Vidal’s
Algorithm [often referred to as the Time Evolving Block Decimation Algorithm (TEBD)] has
been generalised to the treatment of master equations for dissipative systems and systems at
finite temperatures [4], as have similar methods proposed by Verstrate and Cirac [5]. These
latter methods use a different criteria for what constitutes the optimal representation of the
states, and have also been generalised to systems with periodic boundary conditions and to
2D systems [6].

The method we used to perform time-dependent simulations of lattice models relevant
for describing atoms in optical lattice is based on Vidal’s original algorithm, which will be
discussed in detail in the remainder of this chapter. We have significantly optimised the
algorithm by enforcing the intrinsic conservation of particle number in the Hamiltonians
we simulate, and this is presented, together with some example results from the method in
chapter 8. The relationship between DMRG and Vidal’s algorithm was first made explicit
in two articles [7], which had the effects both of making Vidal’s TEBD algorithm available
to a large section of the DMRG community, and making clear the possibility for standard
optimisations from DMRG methods to be implemented in Vidal’s original algorithm. The
enforcement of particle number conservation is one of the most important examples of this.
One of these articles was co-authored by the author of this thesis, and this article is presented
in chapter 9.

7.2 Vidal’s State Representation

In order for Vidal’s algorithm to be applied to a particular system, the Hilbert space of that
system must be expressed as the product of a series of local Hilbert spaces, i.e., each state
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|ψ〉 can be written as the sum

|ψ〉 =
S
∑

i1,i2,...,iM=1

ci1i2...iM |i1〉 ⊗ |i2〉 ⊗ . . .⊗ |iM 〉, (7.3)

where {|il〉}l are the basis states in the local Hilbert space at site i, and for simplicty of
notation, we assume that the dimension of the local Hilbert spaces, S, is a constant.

For example, the Hilbert space for a spin chain is a product of local Hilbert spaces of
dimension S = 2 corresponding to each spin, with basis states |↑〉 and |↓〉. Similarly, the
Hilbert space for a Hubbard model with two species can be expressed as a product over the
local Hilbert spaces corresponding to the occupation of each lattice site, which each have
dimension S = 4 (the possible states are |0〉, |↑〉, |↓〉, and |↑↓〉).

The key to the algorithm is then to represent this state as a convenient decomposition
into a series of tensors, usually defined in terms of the Schmidt decomposition.

7.2.1 Schmidt Decompositions

For any given state ψ of a bipartite system, decomposed into subsystems A and B, there
always exists a decomposition of the form

|ψ〉 =

χA
∑

α=1

λα|φ[A]
α 〉|φ[B]

α 〉, (7.4)

where |φ[A]
α 〉 are states forming a particular orthonormal basis for A and |φ[B]

α 〉 are states
forming a particular orthonormal basis for B. This is called the Schmidt decomposition, and
the Schmidt coefficients λα satisfy

∑

α |λα|2 = 1 and

〈φ[A]
α |ψ〉 = λα|φ[B]

α 〉. (7.5)

The Schmidt coefficients are related to the eigenvalues of the reduced density matrices for
each half of the system, ρA = TrB(|ψ〉〈ψ|) and ρB = TrA(|ψ〉〈ψ|), where Tr denotes the trace,
with

ρA|φ[A]
α 〉 = |λα|2|φ[A]

α 〉 (7.6)

and

ρB|φ[B]
α 〉 = |λα|2|φ[B]

α 〉. (7.7)

The Schmidt rank, χA, is used in quantum information theory as a measure of entanglement
for pure states [8]. Larger values of χA correspond to more highly entangled subsystems A
and B, and when χA = 1, the Schmidt decomposition shows that the system is in a product
state.

That this decomposition exists for all states of all finite-dimensional bipartite systems,
can be derived directly from the singular value decomposition of matrices in linear algebra.
If we write a general state of the bipartite system as

|ψ〉 =
∑

i,j

ci,j |i〉A|j〉B, (7.8)
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where we have chosen any arbitrary orthonormal bases for A and B, |i〉A and |j〉B respectively,
then we obtain a matrix of complex coefficients ci,j .

Now, if C = ci,j is an m × n matrix (i.e., A and B have dimensionalities m and n), then
we know from linear algebra that C has a singular value decomposition (see, for example [8]).
That is, there exist an m × m unitary matrix U ≡ ui, j, an n × n unitary matrix V ≡ vi,j ,
and a matrix D ≡ di,j of size m × n for which only the diagonal elements are non-zero, such
that C = UDV . If we thus expand ci,j in terms of these quantities, we obtain,

|ψ〉 =
∑

k

dk,k

∑

i

ui,k|i〉A
∑

j

vk,j |j〉B

=
∑

k

λk|φ[A]
k 〉|φ[B]

k 〉, (7.9)

where we have identified λk = dk,k, |φ[A]
k 〉 =

∑

i ui,k|i〉A, and |φ[B]
k 〉 =

∑

j vk,j |j〉B. Note that

the unitarity of U and V guarantees the orthonormality of {|φ[A]
k 〉} and {|φ[B]

k 〉}.

7.2.2 The State Decomposition

We then choose to decompose the coefficients ci1i2...iM from Eq. 7.3 as

ci1i2...iM =

χ
∑

α1,...,αM−1

Γ[1] i1
α1

λ[1]
α1

Γ[2] i2
α1α2

λ[2]
α2

Γ[3] i3
α2α3

. . .Γ[M ] iM
αM−1

, (7.10)

where the Γ and λ tensors are chosen so that when a bipartite splitting is made between any

two local Hilbert spaces in the chain, e.g., site l and l + 1, then λ
[l]
α contains the coefficients

of the related Schmidt decomposition,

|ψ〉 =

χl
∑

αl=1

λ[l]
αl
|φ[1... l]

αl
〉|φ[l+1...M ]

αl
〉, (7.11)

and the sum over the remaining Γ and λ tensors produces the Schmidt eigenvectors as

|φ[1...l]
α 〉 =

χl
∑

α1,...,αl−1

Γ[1] i1
α1

λ[1]
α1

Γ[2] i2
α1α2

λ[2]
α2

Γ[3] i3
α2α3

. . .Γ[l] il
αl−1αl

|i1〉 ⊗ . . .⊗ |il〉, (7.12)

and

|φ[l+1...M ]
α 〉 =

χl
∑

αl+1,...,αM−1

Γ
[l+1] il+1
αlαl+1 λ[l+1]

αl+1
Γ

[l+2] il+2
αl+1αl+2 . . .Γ

[M ] iM
αM−1

|il+1〉 ⊗ . . .⊗ |iM 〉, (7.13)

It is shown in section 9.4 that this representation is a matrix product state (the definition and
properties of which are discussed in section 9.3), and thus equivalent to the representations
used in standard DMRG methods.



7.2 Vidal’s State Representation 105

It is straightforward to show by construction that any state of the form in Eq. 7.3 can be
written in this way. We begin by writing the Schmidt Decomposition between sites 1 and 2,

|ψ〉 =
∑

α1

λ[1]
α1
|φ[1]

α1
〉|φ[2...M ]

α1
〉,

=
∑

α1,i1

Γ[1]i1
α1

λ[1]
α1
|i1〉|φ[2...M ]

α1
〉, (7.14)

where we have expanded |φ[1]
α1〉 in the local basis for site 1. We now expand |φ[2...M ]

α1 〉 in the
local basis for site 2 in the chain,

|φ[2...M ]
α1

〉 =
∑

i2

|i2〉|ζ [3...M ]
i2α1

〉, (7.15)

where |ζ [3...M ]
i2α1

〉 is some unnormalised vector that exists on the space formed by the product
of local Hilbert spaces for sites 3 to N . We choose to write these vectors in terms of the basis
for local spaces 3 to N given by the Schmidt eigenvectors for the bipartite splitting between
local spaces 2 and 3, and in terms of the corresponding Schmidt eigenvalues, i.e.,

|ζ [3...M ]
i2α1

〉 =
∑

α2

Γ[2]i2
α1α2

λ[2]
α2
|φ[3...M ]

α2
〉. (7.16)

Substituting Eqs. 7.16 and 7.15 into Eq. 7.14, we then obtain

|ψ〉 =
∑

α1,α1,i1,i2

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2
|i1〉|i2〉|φ[3...M ]

α2
〉. (7.17)

From here we can iterate the steps in Eqs. 7.15 and 7.16 in order to construct the represen-
tation in Eq. 7.10. The identity Eq. 7.13 is then correct by construction, and Eq. 7.12 can
be checked using Eq. 7.5.

7.2.3 Use and Validity of Truncated Decompositions

In Eq. 7.10, we have replaced the original SN coefficients with ∼ (Sχ2 + χ)M coefficients,
where χ = max(χl). However, for a general state, χ ∼ exp(M), and so we have neither lost nor
gained anything by writing this decomposition. The key to the success of this representation
is that we find for many states, especially the low energy states of 1D systems, that the
Schmidt coefficients ordered from highest to lowest decrease approximately exponentially as
a function of their index. This allows us to truncate the decomposition at a relatively small
value of χ whilst not significantly changing the state (the inner product between the states
is essentially unity). The widespread success in the use of DMRG techniques to compute
ground states of 1D lattice and spin models using matrix product states [2] demonstrates the
common occurrence of states for which a decomposition truncated at a particular value of χ
provides an accurate representation for the state.

The relationship between the Schmidt decomposition and measures of entanglement in
quantum information theory [8] means that states for which the truncation can be such states
are often referred to as “slightly entangled” [3]. This relationship can be further quantified,
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and has been very successful in justifying the success of this representation for certain classes
of 1D models, and equally at explaining the difficulties encountered in using DMRG methods
for large systems at critcal points in 1D and more generally in higher dimensions [9].

In quantum information theory, both amount of information in a system and the entan-
glement between two subsystems can be quantified via the von Neumann entropy, which is
the same for subsystems A and B,

S(A) = −Tr [ρA log2 ρA] = −
χ
∑

α=1

λ2
α log2 λ

2
α. (7.18)

This value provides a theoretical lower bound on how many qubits are required to express
the information in subsystem A (or B), and thus a lower bound on the states required to
express that information, χ ≥ 2SA . It has been shown that for certain classes of systems in
1D, that as as the length L of the system grows, the con Neumann entropy saturates, at a
value depending on the correlation length [9]. In contrast, the von Neumann entropy diverges
logarithmically for 1D systems at a critical point, and diverges as SA(L) ∝ Ld−1 in dimension
d > 1. Thus, we expect that in the thermodynamic limit (L → ∞), the ground state of 1D
systems away from critical points can be represented with a finite value of χ, whereas states
at criticality will require a χ that diverges polynomially in L, and in higher dimensions will
diverge exponentially as χ ∝ 2Ld−1

when L→ ∞.

Whilst these theoretical results are useful guides and give good agreement with the general
behaviour observed for DMRG methods, it is clearly possible to simulate finite systems, even
in higher dimensions, for sufficiently small L. Whether a particular truncation is valid must
still be determined numerically, especially when truncations are being performed during the
time evolution of a state. The best test in this regard is to run simulations multiple times
with different values of χ to ensure convergence of the representation, although the sum of
the eigenvalues thrown away in each truncation is also a useful indicator as to what extent
the truncated representations have changed the state (see section 7.4.1).

7.3 Vidal’s TEBD Algorithm

The other major advantage of this decomposition is that it can be efficiently updated when
operators are applied that act either on a single local Hilbert space, or on the local Hilbert
spaces of two neighbouring sites. In each of these cases, only the Γ tensors corresponding to
the spaces that are acted upon need to be updated. This can be seen simply by considering
the Schmidt decompositions taken to the left and to the right of the sites that are acted upon.
For example, if an operator acts on local space of site l, then from the Schmidt decomposition
taken between local spaces l− 1 and l, we see that the tensors Γ[j] and λ[j] with j < l are not
altered, as the Schmidt eigenvectors on spaces 1 . . . (l− 1) are not changed by the operation.
Similarly, from the Schmidt decomposition taken between local spaces l and l+1, we see that
the tensors Γ[j] and λ[j] with j > l are not altered, as the Schmidt eigenvectors on spaces
l + 1 . . .M are not changed by the operation.
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7.3.1 Single-Site Operations

In the case of an operation U =
∑

il,jl
U il

jl
|il〉〈jl| on a single local space, at site l, we need

only update Γ[l], and the new state is given by

Γ[l]il
αl−1αl

=
S
∑

jl=1

U il
jl

Γ[l]jl
αl−1αl

. (7.19)

This operation can be performed in the order of χ2S2 operations.

7.3.2 Two-Site Operations

For an operation on two neighbouring sites, l and l + 1, we must apply the operator V =
∑

V ij
kl |iljl+1〉〈klll+1| to update the tensors Γ[l], Γ[l+1], and λ[l]. In order to apply the operator,

we express the state in terms of the Schmidt eigenvectors to the left of the two sites,

|α〉 = |φ[1...(l−1)]
α 〉, (7.20)

and to the right of the two sites,

|γ〉 = |φ[(l+2)...M ]
γ 〉, (7.21)

as

|ψ〉 =

χ
∑

α,β,γ=1

S
∑

i,j=1

λ[l−1]
α Γ

[l]i
αβλ

[l]
β Γ

[l+1]j
βγ λ[l+1]

γ |αijγ〉, (7.22)

where we have dropped the tensor product symbols in |αijγ〉 ≡ |α〉 ⊗ |i〉l ⊗ |j〉l+1 ⊗ |γ〉. We
can then apply the operator V to write

|ψ′〉 =

χ
∑

α,γ=1

S
∑

i,j=1

Θij
αγ |αijγ〉, (7.23)

with

Θij
αγ =

χ
∑

β=1

S
∑

k,l=1

V ij
kl λ

[l−1]
α Γ

[l]k
αβ λ

[l]
β Γ

[l+1]l
βγ λ[l+1]

γ |αijγ〉. (7.24)

This gives us a total of χ2S2 basis states for the operation, which must then be reduced to
χ2 states afterwards, by performing a Schmidt decomposition between sites l and l + 1 and
retaining only the basis states corresponding to the χ largest coefficients. In this way, we
adapt the truncated Hilbert space that we use to represent the final state. In practice, we do
this by diagonalising the reduced density matrix

ρ[1...l] = Tr(l+1)...M |ψ′〉〈ψ′|

=
∑

j,j′,γ,γ′





∑

α,i

Θij
αγ(Θij′

αγ′)
∗



 |jγ〉〈j′γ′|, (7.25)
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in order to find the new Schmidt coefficients λ
′[l]
β and eigenstates

|φ[(l+1)...M ]
β 〉 =

∑

j,γ

Γ
′[l+1]j
βγ λ[l+1]

γ |jγ〉, (7.26)

from which we can compute the new tensor Γ
′[l+1]j
βγ . The eigenstates |φ[1...l]

β 〉 and the remaining

tensor Γ
′[l]i
αβ can then be found from

λ
′[l]
β |φ′[1...l]

β 〉 = 〈φ[(l+1)...M ]
β |ψ′〉

=
∑

i,j,α,γ

{[

(Γ
′[l+1]j
βγ )∗Θij

αγ

]

/λ[l−1]
α

}

|αi〉 (7.27)

=
∑

i,α

Γ
′[l]i
αβ |αi〉. (7.28)

For sufficiently large χ, this procedure is limited by the time required to diagonalise ρ[1...l],
which requires ∼ χ3S3 operations.

7.3.3 Coherent Time Evolution of a State

Using this method, we can simulate a range of Hamiltonian time evolutions provided that
the Hamiltonian describing the system can be written in the form

Ĥ =
∑

i

Ĥi,i+1, (7.29)

where Ĥi,i+1 are operators that act only on the local Hilbert space for sites i and i+ 1 of the
system. We can rewrite this sum as

Ĥ =
∑

i odd

Ĥi,i+1 +
∑

i even

Ĥi,i+1 = F̂ + Ĝ, (7.30)

where all of the terms in the sum for F̂ commute with one another, as do those in the sum
that gives Ĝ.

We then perform a Suzuki-Trotter decomposition [10] of the time evolution operator for
a short time δt,

e−iĤδt = e−iF̂ δte−iĜδt + O (δt) . (7.31)

This allows us to apply the time evolution in sequence to pairs of neighbouring sites using the
algorithm in section 7.3.2, whilst incurring an error proportional to the size of the timestep
δt. This error can be made smaller by applying a second order expansion,

e−iĤδt = e−iF̂ δt/2e−iĜδte−iF̂ δt/2 + O
[

(δt)2
]

, (7.32)

or higher order expansions (see [10, 11]).
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7.3.4 Finding Initial States

Where the desired initial state for a time evolution is easily expressed as a product state

of sites, this state can easily be written directly with all λ
[l]
α = δα,1 where δα,1 denotes the

Kronecker delta. However, this is generally not the case, and we would like to instead produce
the ground state, |ψ0〉 of some Hamiltonian Ĥ0 as our initial configuration. Possible methods
then include computing |ψ0〉 using DMRG methods and using the resulting state to write the
initial decomposition for the present algorithm; or beginning with a product state which is the
ground state of a particular Hamiltonian, ĤP , and finding a smooth interpolation between
ĤP and Ĥ0 so that |ψ0〉 may be found by an adiabatic time evolution beginning with the
ground state of ĤP .

In practice, the technique we mostly use is to simulate a time evolution in imaginary time
with Hamiltonian Ĥ0, i.e., we find the ground state as

|ψ0〉 = lim
t→∞

exp(−H0t)|ψp〉
|| exp(−H0t)|ψp〉||

, (7.33)

where |ψp〉 is some initial product state with 〈ψp|ψ0〉 6= 0. This procedure is straight-forward
to implement, and requires that the time step δt from section 7.3.3 be replaced by an imag-
inary value, and that the Θ tensor from section 7.3.2 be explicitly normalised in the code.
However, there are two important comments to be made about its practical implementation
and interpretation

Imaginary Time Evolution: Non-conservation of good quantum numbers

Unless the code is adapted so that good quantum numbers, such as total particle number
in the Bose Hubbard model, are explicitly conserved (see chapter 8), numerical noise in the
diagonalisation process can introduce small contributions from states that do not have the
same value of these “good” quantum numbers as the initial state. This is despite the fact that
these values should be conserved if they are conserved when the Hamiltonian is applied to the
state. In a real time evolution this is not normally a problem, as the linear nature of the time
evolution means that these states do not significantly contribute to the dynamics. However,
for an imaginary time evolution this is not the case and the relative weight of these states
can increase exponentially if they have lower energy expectation values than the initial state.
Thus, in an imaginary time evolution for the Bose-Hubbard model, the total particle number
will change in time, and must be chosen by adding a chemical potential term, −µ∑i n̂i to
the Hamiltonian. The resulting state is normally a superposition of states with different total
particle numbers, although we find that the variance in total particle number (which depends
strongly on the initial condition) is very narrow, e.g., much narrower than that expected for
a Bose Hubbard model described in the Grand Canonical Ensemble [12].

Imaginary Time Evolution: Orthogonalisation

High-order Trotter decompositions often used in real time evolution must not be used dur-
ing imaginary time evolutions, unless the sets of Schmidt eigenstates that are assumed to
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be orthogonal during the two site operation in section 7.3.2 are explicitly orthogonalised
and normalised afterwards. This is because the non-unitary operations being applied here
cause many parts of the representation that initially corresponding to Schmidt eigenstates
to become non-orthogonal. This is in contrast to the case of real time evolution, where the
unitarity of the operations ensures that all orthonormal sets of states to which the operation
is applied remain orthonormal. The simplest method to overcome this requirement, ensuring
that all necessary sets of eigenstates remain orthonormal, is to carefully apply the imaginary
time evolution operators in sweeps forwards and backwards through the system, with the
order (1, 2), (2, 3), . . . , (l − 1, l), (l − 1, l), (l − 2, l − 1), . . . , (1, 2).

The potential problem here arises because the two-site operation in section 7.3.2 as-

sumes that when we apply an operator to the sites l and l + 1, the states {|φ[1...l−1]
α 〉} and

{|φ[l+2...M ]
γ 〉} are always orthogonal, but it only explicitly orthogonalises the states {|φ[1...l]

β 〉}
and {|φ[l+1...M ]

β 〉} during the operation. If the operation applied is unitary, then all other
initially orthogonal sets of eigenstates will remain orthogonal. However, in imaginary time
evolution, any set of Schmidt eigenstates corresponding to the part of the system on which
the operator is acting will, in general, become non-orthogonal. For example, amongst other

sets of Schmidt eigenstates, we apply the operation to {|φ[1...l+1]
α 〉}, because these states exist

on a basis containing the local Hilbert spaces of sites l and l+1. If we perform a second-order
Trotter decomposition, and, e.g., apply the next operation to sites l + 2 and l + 3, then we

assume during the operation that the states {|φ[1...l+1]
α 〉} are orthonormal, which is no longer

the case. However, if we perform the next operation instead on sites l + 1 and l + 2 then we

require only that {|φ[1...l]
α 〉} and {|φ[l+3...M ]

γ 〉} are orthonormal. This condition is satisfied for

{|φ[1...l]
α 〉} because these are orthogonalised by the original operation on sites l and l+ 1, and

for {|φ[l+3...M ]
γ 〉} because the previous operation did not change these states, and therefore

we have orthogonality from the original state. This situation recurs as we sweep forwards,
and again as we sweep back through the system. Many sets of states become non-orthogonal,
but the sets of states that we assume at any point to be orthogonal are either made so by
the previous step, or were made so during the previous sweep in the opposite direction. This
provides a simple work-around for the problem of maintaining orthonormality.

At the end of the imaginary time evolution the representation can be restored to a com-
pletely orthonormal representation by applying any unitary operator (e.g., the identity) with
the same forwards-and-back sweep.

Imaginary Time Evolution: Testing the Ground State

The quality of ground states obtained can be tested by performing a real time evolution with
the same Hamiltonian, and testing the change in the state as a function of time. We find
that for ground states of the Bose-Hubbard Hamiltonian found by imaginary time evolution
we normally observe |〈ψ0(0)|ψ0(t)〉|2 > 1 − 10−7 for t ∼ 5J . This value could probably
be improved upon by optimising the imaginary time evolution sweeps, e.g., by carefully
decreasing the timestep δt as the state converges to the ground state, in order to reduce the
Trotter error in each step.
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7.4 Implementation of the Algorithm

Our code was originally written for MATLAB2 as a C MEX interface program, and has
since been rewritten as stand-alone C-code. Typical runtimes of the current code, which
is optimised for particle number conservation in the Bose-Hubbard model, with parameters
χ = 50, M = 50, S = 5 are of the order of several hours for 20000 timesteps. Comparable
performance was previously achievable with an unoptimised code with χ < 10 (see chapter 8
for more details on the optimisation of the code by making use of number conservation).

7.4.1 Choosing simulation parameters

As was already mentioned in section 7.2.2, it is always important to test the convergence of
the results with increasing χ. A useful indicator of convergence is the sum of the eigenvalues
discarded after each diagonalisation,

∑

α>χ λ
2
α. Where comparisons with exact calculations

are possible for small systems, M ∼ 10, we find that if the maximum value of this sum is
less than ∼ 10−9, then even when inner products between states are being computed there is
little error introduced over ∼ 20000 timesteps. Under most circumstances, many calculated
quantities will be reasonably accurate even if the sum of discarded Schmidt coefficients ∼
10−6. However, it is not possible to be sure of correct results in this case without substantially
increasing χ and explicitly testing for convergence of the quantities being calculated.

For Bosons on an optical lattice the states in the local Hilbert space correspond to the
number of particles on the site, and we must also choose the dimension S of the local Hilbert
space to be large enough to accommodate as many particles as are present in the states we
observe. Here, we test the occupation of the highest number state as an indicator of the
convergence with S. In some problems we also allow S to be a function of the site number,
for example in the treatment of the Single Atom Transistor (see Part III of this thesis), where
we consider the existence of a molecular state on one site which does not exist on others.
Allowing such a variable dimension dramatically reduces the simulation time, which when
χ is sufficiently large that the diagonalisation step of the matrix defined in Eq. 7.25 is the
slowest step, scales (for unoptimised implementations of the algorithm) as χ3

∑

l S
3
l .
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Chapter 8

Extensions to the Method and Short Examples

Vidal’s Algorithm is particularly suited to treating systems of atoms in optical lattices
in 1D. Whilst exact methods on full Hilbert spaces cannot access more than M ∼ 10 sites,
we can generally reach size scales on the order of M ∼ 50 − 100, which compares with
typical experimental size scales, M ∼ 100 sites. The ability to perform these calculations is
even more important given that many analytical techniques, especially the use of mean field
theories are known to often work poorly in 1D. Using Vidal’s algorithm we have the means
not only to test predictions from analytical theories, but also to go beyond them and make
exact quantitative predictions of quantities that can be measured in experiments, even in
regimes that cannot be described analytically.

In this chapter two important additions to Vidal’s original scheme are presented. The first
is the method used to calculate correlation functions, and the second is a scheme to greatly
optimise the simulation code by properly taking conserved quantities into consideration. At
the end of the chapter two short examples are presented, demonstrating the types of results
that can be calculated for the Bose-Hubbard model using this algorithm.

8.1 Calculating Correlation Functions

Correlation functions of the form 〈ψ̃|ÂkB̂l|ψ〉, where Âk ≡ Aik
jk

and B̂l ≡ Ail
jl

act only on the
local Hilbert spaces in sites k and l respectively, can easily be computed with of the order of
MSχ4 operations. In fact, provided the operations Â and B̂ act only on single sites, one can
also calculate a single instance of a higher order correlation function in the following way at
no additional computational cost. In each case, the calculation of the correlation function
reduces to the sum over four dimensional tensors Gm, which can each be computed from the
tensors Γ̃[m], Γ[m], λ̃[m], and λ[m], with tensors Gk and Gl being defined from the values of



114 Extensions to the Method and Short Examples

Γ[k] and Γ[l] after the operations Âk and B̂l have been applied. Specifically, we see that

〈ψ̃|ÂkB̂l|ψ〉 =
∑

i1...iM





∑

β1,...,βM−1

Γ̃
[1] i1
β1

λ̃
[1]
β1

Γ̃
[2] i2
β1β2

. . . Γ̃
[M ] iM
βM−1





∗

×





∑

α1,...,αM−1

Γ[1] i1
α1

λ[1]
α1
. . .
∑

jk

Aik
jk

Γ[k] jk
αk−1αk

. . .
∑

jl

Bil
jl
Γ[l] jl

αl−1αl
. . .Γ[M ] iM

αM−1





=
∑

β1,...,βM−1

∑

α1,...,αM−1

(

∑

i1

λ̃
[1]
β1

Γ̃
∗[1] i1
β1

Γ[1] i1
α1

λ[1]
α1

)(

∑

i2

λ̃
[2]
β2

Γ̃
∗[2] i2
β1β2

Γ[2] i2
α1α2

λ[2]
α2

)

×
(

∑

i3

λ̃
[3]
β3

Γ̃
∗[3] i3
β2β3

Γ[3] i3
α2α3

λ[3]
α3

)

. . .





∑

ik

λ̃
[k]
βk

Γ̃
∗[k] ik
βk−1βk





∑

jk

Aik
jk

Γ[k] jk
αk−1αk



λ[k]
αk



 . . .

× . . .





∑

il

λ̃
[l]
βl

Γ̃
∗[l] il
βl−1βl





∑

jl

Bil
jl
Γ[l] jl

αl−1αl



λ[l]
αl



 . . .





∑

iM

Γ̃
∗[M ] iM
βM−1

Γ[M ] i1
αM−1





= (G1)β1α1(G2)
β1α1

β2α2
(G3)

β2α2

β3α3
. . . (Gk)

βk−1αk−1

βkαk
. . . (Gl)

βl−1αl−1

βlαl
. . . (GM )βM−1αM−1 ,

(8.1)

with

(G1)β1α1 =

(

∑

i1

λ̃
[1]
β1

Γ̃
∗[1] i1
β1

Γ[1] i1
α1

λ[1]
α1

)

(G2)
β1α1

β2α2
=

(

∑

i2

λ̃
[2]
β2

Γ̃
∗[2] i2
β1β2

Γ[2] i2
α1α2

λ[2]
α2

)

...
...

(Gk)
βk−1αk−1

βkαk
=





∑

ik

λ̃
[k]
βk

Γ̃
∗[k] ik
βk−1βk





∑

jk

Aik
jk

Γ[k] jk
αk−1αk



λ[k]
αk





...
...

(GM )βM−1αM−1 =





∑

iM

Γ̃
∗[M ] iM
βM−1

Γ[M ] i1
αM−1



 ,

(8.2)

and where in the last line of Eq. 8.1 we have omitted the summation symbols for αm and
βm. Note that, in principle, more complicated operations can also be performed on the
state |ψ〉 before calculating the sum, and thus more complex correlation functions could be
computed. For example the application of an operation acting on two neighbouring sites
could be performed as discussed in section 7.3.2.

Two special cases of Eq. 8.1 are the inner product for two states, 〈ψ̃|ψ〉, and the calculation
of simple correlation functions, e.g., the elements of the single particle density matrix for the
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Bose-Hubbard model, 〈ψ|b̂†i b̂j |ψ〉. Where the two states |ψ〉 and |ψ̃〉 are the same, there
is no need to perform the entire sum in Eq. 8.1. Instead, the orthonormality of Schmidt
eigenstates in the representation means that the calculation can be simplified because parts
of the representation are unchanged by the application of the operator ÂkB̂l. In particular
(assuming k ≤ l), all Γ[i] for i < k or i > l and all λ[i] are unchanged, and as a result the sum
simplifies to

〈ψ|ÂkB̂l|ψ〉 = |λ[k−1]
βk−1

|2(Gk)
βk−1βk−1

βkαk
. . . (Gl)

βl−1αl−1

βlβl
. (8.3)

8.2 Conserved Quantities and Vidal’s Algorithm

The algorithm can be substantially optimised by taking into account the existence of con-
served quantities, or “good quantum numbers” for the Hamiltonian describing the time evolu-
tion being computed. This optimisation is well known in implementations of DMRG methods
[1], and its implementation here was adapted after the equivalence of matrix product state
representations in DMRG and Vidal’s Algorithm were demonstrated (see [2], and chapter 9
of this thesis). Whilst many similar symmetries can be dealt with in the manner described
here (e.g., the total magnetisation in spin systems), the implementation is presented here for
conservation of total particle number, as arises in the Bose-Hubbard model.

In the Bose-Hubbard model the states in each local Hilbert spaces, |i〉l, each correspond
to a particular number of particles on the site (l). We denote this number NL(i). Then,
given a system with a fixed total particle number, N , let us assume that the initial Schmidt

eigenvectors, |α〉 ≡ |φ[1...l]
α 〉 and |γ〉 ≡ |φ[l+1...M ]

γ 〉 each are states of fixed total particle number,
NS(α) and NS(γ). This can clearly be chosen in the initial state, and we will show that these
vectors still correspond to some particular total particle number after a two-site operation
(see section 7.3.2 for details of this operation). We then keep track of those numbers and use
them to divide the problem into smaller parts as shown below.

After the application of the time-evolution or imaginary time evolution operator (both of
which are number conserving), the state as expressed in Eq. 7.23 reads

|ψ′〉 =

χ
∑

α,γ=1

S
∑

i,j=1

Θij
αγ |αijγ〉.

Because we know that any state |αijγ〉 contributing to |ψ′〉 must satisfy N = NS(α)+NL(i)+
NL(j) + NS(γ), the tensor Θij

αγ is non-zero only when this sum is satisfied. In practice, we
form tables of valid combinations of i and j given the values of NS(α) and NS(γ) (this can
also be used to optimise the construction of Θij

αγ). Then, when we form the reduced density
matrix, Eq. 7.25,

ρ[1...l] =
∑

j,j′,γ,γ′





∑

α,i

Θij
αγ(Θij′

αγ′)
∗



 |jγ〉〈j′γ′|,

we see that the only non-zero values are those where NL(j′)+NS(γ′) = NL(j)+NS(γ), thus
leading (when the states are appropriately ordered) to a block-diagonal matrix with each
block corresponding to a fixed particle number, NR = NL(j) +NS(γ).
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Instead of diagonalising the whole matrix ρ[1...l] we instead diagonalise the blocks sepa-

rately, as matrices ρ
[1...l]
NR

, each corresponding to a fixed total particle number for the “right
hand side” of the system, sites {l + 1, . . . ,M}. The resulting eigenvectors then also each
correspond to states with fixed number of particles, and we choose the eigenvectors cor-

responding to the largest eigenvalues taken over ρ
[1...l]
NR

for all NR to be the new eigen-

states |φ[(l+1)...M ]
β 〉. When the corresponding Schmidt eigenstates for the “left hand side”

of the system, sites {1, . . . , l} are found, their particle numbers must also be fixed so that

NS(φ
[(l+1)...M ]
β ) + NS(φ

′[1...l]
β ) = N . Thus, the new Schmidt eigenvectors all correspond to

fixed particle numbers, and the process can be repeated in subsequent two-site operations.

The major gain from this optimisation occurs because the matrices ρ
[1...l]
NR

that we must

diagonalise are much smaller than the full reduced density matrix ρ[1...l]. Not only is the
algorithm then faster for a fixed χ than the unoptimised algorithm, but the computation
time no longer scales as S3χ3 (a scaling which arose from the diagonalisation of ρ[1...l]). For
fixed S ∼ 5, we find that the computation time scales approximately as ∼ χ2, on top of a
speed increase of more than an order of magnitude for fixed χ = 10.

8.3 Example: Superfluid and Mott Insulator Ground states

in 1D

A simple demonstration of the capabilities of the imaginary time evolution routine is com-
putation of ground states for the Bose-Hubbard model with different trapping potentials.
This model, as discussed in chapter 2 is given in terms of bosonic creation and annihilation
operators b̂†i and b̂i for particles on site i as

Ĥ = −J
∑

〈i,j〉
b̂†i b̂j +

U

2

∑

i

n̂i(n̂i − 1) +
∑

i

ǫin̂i,

where 〈i, j〉 denotes a sum over all combinations of neighbouring sites, and n̂i = b̂†i b̂i. Ground
states of this and other models serve as the initial states in our time-dependent calculations,
and provide important information about the system in their own right. In this section we
present example calculations of these ground states, represented by the computed values of
the single particle density matrix, 〈b̂†i b̂j〉. The diagonal entries of this matrix are 〈n̂i〉, the
onsite densities, and the off-diagonal elements represent correlations between different sites.

8.3.1 Box Trap

Fig. 8.1 shows the single particle density matrix for a typical superfluid ground state of the
Bose-Hubbard model in a box trap (ǫi = 0). In this case, we have computed the ground
state for N = 60 particles in M = 60 lattice sites with U/J = 1. The superfluid state is
characterised by strong off-diagonal correlations, representative of the off-diagonal quasi-long
range order found in this system. These off-diagonal correlations give rise to maxima and
minima that are observed experimentally in interference patterns when atoms are released
from the lattice [3]. In contrast, for the same calculation in the Mott Insulator regime (with
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U/J = 20), which is shown in Fig. 8.2, we see that the off diagonal correlations decay rapidly
(in fact exponentially) with the separation between lattice sites.

Figure 8.1. Single particle density matrix, 〈b̂†i b̂j〉, for the superfluid ground
state of the 1D Bose-Hubbard model with N = M = 60, U/J = 1, ǫi = 0.

Figure 8.2. Single particle density matrix, 〈b̂†i b̂j〉, for the MI ground state of
the 1D Bose-Hubbard model with N = M = 60, U/J = 20, ǫi = 0.
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8.3.2 Harmonic Trap

The ground states of the system in a Harmonic trap look considerably different, and depend
strongly on the number of particles found in the system. In Figs. 8.3, 8.4, and 8.5, the single
particle density matrix is shown for N = 20, N = 35, and N = 50 particles respectively,
in a harmonic trap with ǫi/J = 0.1(i − i0)

2, and U/J = 20. For 20 particles, we observe a
standard Mott Innsulator state for the average filling factor n = 1, with correlations decaying
exponentially as a function of the lattice site separation. In the outermost occupied sites we
observe a small decrease in the number of atoms and a small increase in off-diagonal elements
of the single particle density matrix, indicating that a small superfluid component exists at
the very edge of the trapped gas. For 35 particles, this same behaviour is observed, except
that there is now also a clear region in the middle of the trap with a superfluid component
sitting on top of the Mott Insulator core. For 50 particles, we see clearly from Fig. 8.5 yet
another step in this progression, with a Mott Insulator state with n = 2 in the centre of the
trap, flanked by superfluid regions, then a Mott Insulator phase with n = 1, and finally a
small superfluid region at the edge. This behaviour can be explained in terms of the Grand
Canonical Ensemble phase diagram (Fig. 2.5) if we make a local density approximation, and
approximate a local chemical potential µi ≈ µ − ǫi. We then see that as we move from the
centre of the trap to the outside, the effective chemical potential decreases, and for a fixed
J/U we pass through phases corresponding to different Mott lobes in the phase diagram, and
to the superfluid regions in between.

Figure 8.3. Single particle density matrix, 〈b̂†i b̂j〉, for the ground state of the
1D Bose-Hubbard model with N = 20 particles, U/J = 20, ǫi/J = 0.1(i− i0)

2.
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Figure 8.4. Single particle density matrix, 〈b̂†i b̂j〉, for the ground state of the
1D Bose-Hubbard model with N = 35 particles, U/J = 20, ǫi/J = 0.1(i− i0)

2.

Figure 8.5. Single particle density matrix, 〈b̂†i b̂j〉, for the ground state of the
1D Bose-Hubbard model with N = 50 particles, U/J = 20, ǫi/J = 0.1(i− i0)

2.
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8.4 Time Dependence of the MI-Superfluid Transition

The study of the properties of phase transitions for finite system is one of the more interest-
ing possibilities presented by time-dependent many body calculations. Here we present an
example from the Superfluid-Mott Insulator transition, the dynamics of which were analysed
in some detail by Clark and Jaksch [4]. Here we present results of dynamical calculations in
which we begin in the Mott Insulator ground state for U/J = 10 at t = 0, and ramp linearly
in a time tR/2 to U/J = 1, and then back to U/J = 10 at t = tR. In Fig. 8.6 we present the
time dependent overlap between the time evolving state |ψ(t)〉 and the initial Mott Insulator
state |ψ(0)〉,

F (t) = |〈ψ(0)|ψ(t)〉|2 . (8.4)

This quantity is interesting because it gives the most stringent possible accuracy test both
for the computed state and for whether the system returns to the initial state after passing
the phase transition twice. From Fig. 8.6a we see that we obtain excellent agreement with
the calculation for a small system, with M = N = 6, and observe that for slow sweeps
we essentially return to the exactly the initial state. When we perform the calculation for
M = N = 20, Fig. 8.6, we observe that much slower ramp speeds are required to return
the state adiabatically to |ψ(0)〉 at t = tR. This occurs because the energy separation of the
ground state and lowest excited states decreases substantially as the system size is increased.
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Figure 8.6. Plots of F (t) = |〈ψ(0)|ψ(t)〉|2 as U/J is ramped across the MI-
Superfluid transition with U/J = 10 → 1 as a linear ramp in time tR/2, and
U/J = 1 → 10 in time tR/2. These results are for a Bose Hubbard model with
ǫi = 0, and (a) M = N = 6, (b) M = N = 20. The dashed lines in (a) are
exact calculations using the full Hilbert space.
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An algorithm for the simulation of the evolution of slightly entangled quantum states
has been recently proposed as a tool to study time-dependent phenomena in one-dimensional
quantum systems. Its key feature is a time-evolving block-decimation (TEBD) procedure
to identify and dynamically update the relevant, conveniently small subregion of the oth-
erwise exponentially large Hilbert space. Potential applications of the TEBD algorithm
are the simulation of time-dependent Hamiltonians, transport in quantum systems far
from equilibrium and dissipative quantum mechanics. In this paper we translate the
TEBD algorithm into the language of matrix product states in order to both highlight
and exploit its resemblances to the widely used density-matrix renormalization-group
(DMRG) algorithms. The TEBD algorithm, being based on updating a matrix product
state in time, is very accessible to the DMRG community and it can be enhanced by

†The primary contribution of the author of the present thesis to this work was the explicit expression of
the TEBD algorithm in Matrix Product state notation (sections 9.3 and 9.4), which formed the basis of the
implementation. The example calculations were carried out by other coauthors, with the author of the present
thesis acting as a discussion partner.
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using well-known DMRG techniques, for instance in the event of good quantum numbers.
More importantly, we show how it can be simply incorporated into existing DMRG im-
plementations to produce a remarkably effective and versatile “adaptive time-dependent
DMRG” variant, that we also test and compare to previous proposals.

9.1 Introduction

Over many decades the description of the physical properties of low-dimensional strongly
correlated quantum systems has been one of the major tasks in theoretical condensed matter
physics. Generically, this task is complicated by the strong quantum fluctuations present
in such systems which are usually modelled by minimal-model Hubbard or Heisenberg-style
Hamiltonians. Despite the apparent simplicity of these Hamiltonians, few analytically exact
solutions are available and most analytical approximations remain uncontrolled. Hence, nu-
merical approaches have always been of particular interest, among them exact diagonalization
and quantum Monte Carlo.

Decisive progress in the description of the low-energy equilibrium properties of one-
dimensional strongly correlated quantum Hamiltonians was achieved by the invention of
the density-matrix renormalization-group (DMRG) [1, 2]. It is concerned with the iterative
decimation of the Hilbert space of a growing quantum system such that some quantum state,
say the ground state, is approximated in that restricted space with a maximum of overlap
with the true state. Let the quantum state of a one-dimensional system be

|ψ〉 =
∑

i

∑

j

ψij |i〉|j〉, (9.1)

where we consider a partition of the system into two blocks S and E, and where {|i〉} and
{|j〉} are orthonormal bases of S and E respectively. Then the DMRG decimation procedure
consists of projecting |ψ〉 on the Hilbert spaces for S and E spanned by the M eigenvectors
|wS

α〉 and |wE
α 〉 corresponding to the largest eigenvalues λ2

α of the reduced density matrices

ρ̂S = TrE |ψ〉〈ψ| ρ̂E = TrS |ψ〉〈ψ|, (9.2)

such that ρ̂S |wS
α〉 = λ2

α|wS
α〉 and ρ̂E |wE

α 〉 = λ2
α|wE

α 〉. That both density matrices have the
same eigenvalue spectrum is reflected in the guaranteed existence of the so-called Schmidt
decomposition of the wave function [3],

|ψ〉 =
∑

α

λα|wS
α〉|wE

α 〉, λα ≥ 0, (9.3)

where the number of positive λα is bounded by the dimension of the smaller of the bases of
S and E.

Recently [4–9], the ability of the DMRG decimation procedure to preserve the entan-
glement of |ψ〉 between S and E has been studied in the context of quantum information
science [3, 10]. This blooming field of research, bridging between quantum physics, computer
science and information theory, offers a novel conceptual framework for the study of quan-
tum many-body systems [3–17]. New insights into old quantum many-body problems can be
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gained from the perspective of quantum information science, mainly through its eagerness to
characterize quantum correlations. As an example, a better understanding of the reasons of
the breakdown of the DMRG in two-dimensional systems has been obtained in terms of the
growth of bipartite entanglement in such systems [7, 9].

More specifically, in quantum information the entanglement of |ψ〉 between S and E is
quantified by the von Neumann entropy of ρ̂S (equivalently, of ρ̂E),

S(ρ̂S) = −
∑

λ2
α log2 λ

2
α, (9.4)

a quantity that imposes a useful (information theoretical) bound M ≥ 2S on the minimal
number M of states to be kept during the DMRG decimation process if the truncated state
is to be similar to |ψ〉. On the other hand, arguments from field theory imply that, at zero
temperature, strongly correlated quantum systems are in some sense only slightly entangled
in d = 1 dimensions but significantly more entangled in d > 1 dimensions: In particular, in
d = 1 a block corresponding to l sites of a gapped infinite-length chain has an entropy Sl

that stays finite even in the thermodynamical limit l → ∞, while at criticality Sl only grows
logarithmically with l. It is this saturation or, at most, moderate growth of Sl that ultimately
accounts for the succeess of DMRG in d = 1. Instead, in the general d-dimensional case the
entropy of bipartite entanglement for a block of linear dimension l scales as Sl ∼ ld−1. Thus,
in d = 2 dimensions the DMRG algorithm should keep a number M of states that grows
exponentially with l, and the simulation becomes inefficient for large l (while still feasible for
small l).

While DMRG has yielded an enormous wealth of information on the static and dynamic
equilibrium properties of one-dimensional systems[18, 19] and is arguably the most powerful
method in the field, only few attempts have been made so far to determine the time evolution
of the states of such systems, notably in a seminal paper by Cazalilla and Marston [20]. This
question is of relevance in the context of the time-dependent Hamiltonians realized e.g. in
cold atoms in optical lattices [21, 22], in systems far from equilibrium in quantum trans-
port, or in dissipative quantum mechanics. However, in another example of how quantum
information science can contribute to the study of quantum many-body physics, one of us
(G.V.) has recently developed an algorithm for the simulation of slightly entangled quantum
computations [23] that can be used to simulate time evolutions of one-dimensional systems
[17].

This new algorithm, henceforth referred to as the time-evolving block decimation (TEBD)
algorithm, considers a small, dynamically updated subspace of the blocks S and E in Eq.
(9.3) to efficiently represent the state of the system, as we will review in detail below. It was
originally developed in order to show that a large amount of entanglement is necessary in
quantum computations, the rationale there being quite simple: any quantum evolution (e.g.
a quantum computation) involving only a “sufficiently restricted” amount of entanglement
can be efficiently simulated in a classical computer using the TEBD algorithm; therefore,
from an algorithmical point of view, any such quantum evolution is not more powerful than
a classical computation.

Regardless of the implications for computer science, the above connection between the
amount of entanglement and the complexity of simulating quantum systems is of obvious
practical interest in condensed matter physics since, for instance, in d = 1 dimensions the
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entanglement of most quantum systems happens to be “sufficiently restricted” precisely in
the sense required for the TEBD algorithm to yield an efficient simulation. In particular, the
algorithm has already been implemented and tested successfully on spin chains[17], the Bose-
Hubbard model and single-atom transistors[24] and dissipative systems at finite temperature
[25].

A primary aim of this paper is to reexpress the TEBD algorithm in a language more
familiar to the DMRG community than the one originally used in Refs. [17, 23], which made
substantial use of the quantum information parlance. This turns out to be a rewarding task
since, as we show, the conceptual and formal similarities between the TEBD and DMRG are
extensive. Both algorithms search for an approximation to the true wave function within a
restricted class of wave functions, which can be identified as matrix product states [26], and
had also been previously proposed under the name of finitely-correlated states[27]. Arguably,
the big advantage of the TEBD algorithm relies on its flexibility to flow in time through
the submanifold of matrix product states. Instead of considering time evolutions within
some restricted subspace according to a fixed, projected, effective Hamiltonian, the TEBD
algorithm updates a matrix product state in time using the bare Hamiltonian directly. Thus,
in a sense, it is the Schrödinger equation that decides, at each time step, which are the
relevant eigenvectors for S and E in Eq. (9.3), as opposed to having to select them from some
relatively small, pre-selected subspace.

A second goal of this paper is to show how the two algorithms can be integrated. The
TEBD algorithm can be improved by considering well-known DMRG techniques, such as the
handling of good quantum numbers. But most importantly, we will describe how the TEBD
simulation algorithm can be incorporated into preexisting, quite widely used DMRG imple-
mentations, the so-called finite-system algorithm[2] using White’s prediction algorithm[28].
The net result is an extremely powerful “adaptive time-dependent DMRG” algorithm, that
we test and compare against previous proposals.

The outline of this paper is as follows: In Section 9.2, we discuss the problems currently
encountered in applying DMRG to the calculation of explicitly time-dependent quantum
states. Section 9.3 reviews the common language of matrix product states. We then express
both the TEBD simulation algorithm (Sec. 9.4) and DMRG (Sec. 9.5) in this language,
revealing where both methods coincide, where they differ and how they can be combined.
In Section 9.6, we then formulate the modifications to introduce the TEBD algorithm into
standard DMRG to obtain the adaptive time-dependent DMRG, and Section 9.7 discusses
an example application, concerning the quantum phase transition between a superfluid and
a Mott-insulating state in a Bose-Hubbard model. To conclude, we discuss in Section 9.8 the
potential of the new DMRG variant.

9.2 Simulation of time-dependent quantum phenomena using

DMRG

The first attempt to simulate the time evolution of quantum states using DMRG is due
to Cazalilla and Marston [20]. After applying a standard DMRG calculation using the
Hamiltonian Ĥ(t = 0) to obtain the ground state of the system at t = 0, |ψ0〉, the time-
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dependent Schrödinger equation is numerically integrated forward in time, building an ef-
fective Ĥeff(t) = Ĥeff(0) + V̂eff(t), where Ĥeff(0) is taken as the Hamiltonian approximating
Ĥ(0) in the truncated Hilbert space generated by DMRG. V̂eff(t) as an approximation to
V̂ (t) is built using the representations of operators in the block bases obtained in the stan-
dard DMRG calculation of the t = 0 state. V̂ (t) contains the changes in the Hamiltonian
with respect to the starting Hamiltonian: Ĥ(t) = Ĥ0 + V̂ (t). The (effective) time-dependent
Schrödinger equation reads

i
∂

∂t
|ψ(t)〉 = [Ĥeff − E0 + V̂eff(t)]|ψ(t)〉, (9.5)

where the time-dependence of the ground state resulting of Ĥ(0) has been transformed away.
If the evolution of the ground state is looked for, the initial condition is obviously to take
|ψ(0)〉 = |ψ0〉 obtained by the preliminary DMRG run. Forward integration can be carried out
by step-size adaptive methods such as the Runge-Kutta integration based on the infinitesimal
time evolution operator

|ψ(t+ δt)〉 = (1 − iĤ(t)δt)|ψ(t)〉, (9.6)

where we drop the subscript denoting that we are dealing with effective Hamiltonians only.
The algorithm used was a fourth-order adaptive size Runge-Kutta algorithm [29].

Sources of errors in this approach are twofold, due to the approximations involved in
numerically carrying out the time evolution, and to the fact that all operators live on a
truncated Hilbert space.

For the systems studied we have obtained a conceptually simple improvement concerning
the time evolution by replacing the explicitly non-unitary time-evolution of Eq. (9.6) by the
unitary Crank-Nicholson time evolution

|ψ(t+ δt)〉 =
1 − iĤ(t)δt/2

1 + iĤ(t)δt/2
|ψ(t)〉. (9.7)

To implement the Crank-Nicholson time evolution efficiently we have used a (non-Hermitian)
biconjugate gradient method to calculate the denominator of Eq. (9.7). In fact, this modifi-
cation ensures higher precision of correlators, and the occurence of asymmetries with respect
to reflection in the results decreased.

It should be noted, however, that for the Crank-Nicholson approach only lowest-order
expansions of the time evolution operator exp(−iĤδt) have been taken; we have not pursued
feasible higher-order expansions.

As a testbed for time-dependent DMRG methods we use throughout this paper the time-
dependent Bose-Hubbard Hamiltonian,

ĤBH(t) = −J
L−1
∑

i=1

b†i+1bi + b†ibi+1 +
U(t)

2

L
∑

i=1

ni(ni − 1), (9.8)

where the (repulsive) onsite interaction U > 0 is taken to be time-dependent. This model
exhibits for commensurate filling a Kosterlitz-Thouless-like quantum phase transition from
a superfluid phase for u < uc (with u = U/J) to a Mott-insulating phase for u > uc. We
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have studied a Bose-Hubbard model with L = 8 and open boundary conditions, total particle
number N = 8, J = 1, and instantaneous switching from U1 = 2 in the superfluid phase to
U2 = 40 in the Mott phase at t = 0. We consider the nearest-neighbor correlation, a robust
numerical quantity, between sites 2 and 3. Up to 8 bosons per site (i.e. Nsite = 9 states per
site) were allowed to avoid cut-off effects in the bosonic occupation number in all calculations
in this Section. All times in this paper are measured in units of ~/J or 1/J , setting ~ ≡ 1.
Comparing Runge-Kutta and Crank-Nicholson (with time steps of δt = 5 × 10−5) we found
the latter to be numerically preferable; all static time-dependent DMRG calculations have
been carried out using the latter approach.

However, Hilbert space truncation is at the origin of more severe approximations. The
key assumption underlying the approach of Cazalilla and Marston is that the effective static
Hilbert space created in the preliminary DMRG run is sufficiently large that |ψ(t)〉 can be
well approximated within that Hilbert space for all times, such that

ǫ(t) = 1 − |〈ψ(t)|ψexact(t)〉| (9.9)

remains small as t grows. This, in general, will only be true for relatively short times. A
variety of modifications that should extend the reach of the static Hilbert space in time can
be imagined. They typically rest on the DMRG practice of “targeting” several states: to
construct the reduced density matrix used to determine the relevant Hilbert space states,
one may carry out a partial trace over a mixture of a small number of states such that the
truncated Hilbert space is constructed so that all of those states are optimally approximated
in the DMRG sense:

ρ̂S = TrE |ψ〉〈ψ| → ρ̂S = TrE

∑

i

αi|ψi〉〈ψi|. (9.10)

A simple choice uses the targeting of Ĥn|ψ0〉, for n less than 10 or so, approximating the
short-time evolution, which we have found to substantially improve the quality of results for
non-adiabatic switching of Hamiltonian parameters in time: convergence in M is faster and
more consistent with the new DMRG method (see below).

Similarly, we have found that for adiabatic changes of Hamiltonian parameters results
improve if one targets the ground states of both the initial and final Hamiltonian. These
approaches are conceptually very similar to targeting not only |ψ0〉, but also Ô|ψ0〉 and some
ĤnÔ|ψ0〉, n = 1, 2, 3, . . . in Lanczos vector dynamics DMRG[30, 31], or real and imaginary
part of (Ĥ − ω − E0 + iη)−1Ô|ψ0〉 in correction vector dynamics DMRG[31, 32] to calculate
Green’s functions

〈ψ0|Ô† 1

H − ω − E0 + iη
Ô|ψ0〉. (9.11)

To illustrate the previous approaches, we show results for the parameters of the Bose-
Hubbard model discussed above. Time evolution is calculated in the Crank-Nicholson ap-
proach using a stepwidth δt = 5 · 10−5 in time units of ~/J targeting (i) just the superfluid
ground state |ψ0〉 for U1 = 2 (Fig. 9.1), (ii) in addition to (i) also the Mott-insulating ground
state |ψ′

0〉 for U2 = 40 and Ĥ(t > 0)|ψ0〉 (Fig. 9.2), (iii) in addition to (i) and (ii) also
Ĥ(t > 0)2|ψ0〉 and Ĥ(t > 0)3|ψ0〉 (Fig. 9.3).
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Figure 9.1. Time evolution of the real part of the nearest-neighbor correlations
in a Bose-Hubard model with instantaneous change of interaction strength at
t = 0: superfluid state targeting only. The different curves for different M are
shifted.
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Figure 9.2. Time evolution of the real part of the nearest-neighbor correlations
in a Bose-Hubard model with instantaneous change of interaction strength at
t = 0: targeting of the initial superfluid ground state, Mott insulating ground
state and one time-evolution step. The different curves for different M are
shifted.
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Figure 9.3. Time evolution of the real part of the nearest-neighbor correlations
in a Bose-Hubard model with instantaneous change of interaction strength at
t = 0: targeting of the initial superfluid ground state, Mott insulating ground
state and three time-evolution steps. The different curves for different M are
shifted.
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Figure 9.4. Comparison of the three M = 200 Crank-Nicholson calculations
to adaptive time-dependent DMRG at M = 50: we target (i) just the superfluid
ground state |ψ0〉 for U1 = 2 (Fig. 9.1), (ii) in addition to (i) also the Mott-
insulating ground state |ψ′

0〉 for U2 = 40 and Ĥ(t > 0)|ψ0〉 (Fig. 9.2), (iii) in
addition to (i) and (ii) also Ĥ(t > 0)2|ψ0〉 and Ĥ(t > 0)3|ψ0〉. The different
curves are shifted.
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We have used up to M = 200 states to obtain converged results (meaning that we could
observe no difference between the results for M = 100 and M = 200) for t ≤ 4, corresponding
to roughly 25 oscillations. The results for the cases (ii) and (iii) are almost converged for
M = 50, whereas (i) shows still crude deviations.

A remarkable observation can be made if one compares the three M = 200 curves (Fig.
9.4), which by standard DMRG procedure (and for lack of a better criterion) would be
considered the final, converged outcome, both amongst each other or to the result of the new
adaptive time-dependent DMRG algorithm which we are going to discuss below: result (i)
is clearly not quantitatively correct beyond very short times, whereas result (ii) agrees very
well with the new algorithm, and result (iii) agrees almost (beside some small deviations at
t ≈ 3) with result (ii) and the new algorithm. Therefore we see that for case (i) the criterion
of convergence in M does not give a good control to determine if the obtained results are
correct. This raises as well doubts about the reliability of this criterion for cases (ii) and (iii).

A more elaborate, but also much more time-consuming improvement still within the
framework of a static Hilbert space was proposed by Luo, Xiang and Wang [33, 34]. Addi-
tional to the ground state they target a finite number of quantum states at various discrete
times using a bootstrap procedure starting from the time evolution of smaller systems that
are iteratively grown to the desired final size.

The observation that even relatively robust numerical quantities such as nearest-neighbor
correlations can be qualitatively and quantitatively improved by the additional targeting of
states which merely share some fundamental characteristics with the true quantum state (as
we will never reach the Mott-insulating ground state) or characterize only the very short-
term time evolution indicates that it would be highly desirable to have a modified DMRG
algorithm which, for each time t, selects Hilbert spaces of dimension M such that |ψ(t)〉 is
represented optimally in the DMRG sense, thus attaining at all times the typical DMRG
precision for M retained states. The presentation of such an algorithm is the purpose of the
following sections.

9.3 Matrix product states

As both the TEBD simulation algorithm and DMRG can be neatly expressed in the language
of matrix product states, let us briefly review the properties of these states also known as
finitely-correlated states[26, 27].

We begin by considering a one-dimensional system of size L, divided up into sites which
each have a local Hilbert space, Hi. For simplicity we take the same dimension Nsite at all
sites. In such a system a product state may be expressed as

|σ〉 = |σ1〉 ⊗ |σ2〉 ⊗ . . .⊗ |σL〉, (9.12)

where |σi〉 denotes the local state on site i. We can express a general state of the whole
system as

|ψ〉 =
∑

σ1,...,σL

ψσ1,...,σL
|σ1〉 ⊗ |σ2〉 ⊗ . . .⊗ |σL〉

≡
∑

σ

ψσ|σ〉. (9.13)
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This general state exists in the Hilbert space H =
∏L

i=1 Hi, with dimension (Nsite)
L.

A matrix product state is now formed by only using a specific set of expansion coefficients
ψσ. Let us construct this set in the following. To do this we define operators Âi[σi] which
correspond to a local basis state |σi〉 at site i of the original system, but which act on auxiliary
spaces of dimension M , i.e.,

Âi[σi] =
∑

α,β

Ai
αβ [σi]|α〉〈β|, (9.14)

where |α〉 and |β〉 are orthonormal basis states in auxiliary spaces. For visualization, we
imagine the auxiliary state spaces to be located on the bonds next to site i. If we label the
bond linking sites i and i+1 by i, then we say that the states |β〉 live on bond i and the states
|α〉 on bond i− 1. The operators Âi[σi] hence act as transfer operators past site i depending
on the local state on site i. On the first and last site, which will need special attention later,
this picture involves bonds 0 and L to the left of site 1 and to the right of site L respectively.
While these bonds have no physical meaning for open boundary conditions, they are identical
and link sites 1 and L as one physical bond for periodic boundary conditions. There is no a
priori significance to be attached to the states in the auxiliary state spaces.

In general, operators corresponding to different sites can be different. If this is the case
the resulting matrix product state to be introduced is referred to as a position dependent
matrix product state. We also impose the condition

∑

σi

Âi[σi]Â
†
i [σi] = I, (9.15)

which we will see to be related to orthonormality properties of bases later. An unnormalized
matrix product state in a form that will be found useful for Hamiltonians with open boundary
conditions is now defined as

|ψ̃〉 =
∑

σ

(

〈φL|
L
∏

i=1

Âi[σi]|φR〉
)

|σ〉, (9.16)

where |φL〉 and |φR〉 are the left and right boundary states in the auxiliary spaces on bonds
0 and L. They act on the product of the operators Âi to produce scalar coefficients

ψσ = 〈φL|
L
∏

i=1

Âi[σi]|φR〉 (9.17)

for the expansion of |ψ̃〉.
Several remarks are in order. It should be emphasized that the set of states obeying Eq.

(9.16) is an (arbitrarily constructed) submanifold of the full boundary-condition independent
Hilbert space of the quantum many-body problem on L sites that is hoped to yield good
approximations to the true quantum states for Hamiltonians with open boundary conditions.
If the dimension M of the auxiliary spaces is made sufficiently large then any general state of
the system can, in principle, be represented exactly in this form (provided that |φL〉 and |φR〉
are chosen appropriately), simply because the O(NsiteLM

2) degrees of freedom to choose the
expansion coefficients will exceed NL

site. This is, of course, purely academic. The practical
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relevance of the matrix product states even for computationally manageable values of M is
shown by the success of DMRG, which is known[35, 36] to produce matrix product states
of auxiliary state space dimension M , in determining energies and correlators at very high
precision for moderate values of M . In fact, some very important quantum states in one
dimension, such as the valence-bond-solid (VBS) ground state of the Affleck-Kennedy-Lieb-
Tasaki (AKLT) model [37–39], can be described exactly by matrix product states using very
small M (M = 2 for the AKLT model).

Let us now formulate a Schmidt decomposition for matrix product states which can be
done very easily. An unnormalized state |ψ̃〉 of the matrix-product form of Eq. (9.16) with
auxiliary space dimension M can be written as

|ψ̃〉 =
M
∑

α=1

|w̃S
α〉|w̃E

α 〉, (9.18)

where we have arbitrarily cut the chain into S on the left and E on the right with

|w̃S
α〉 =

∑

{σS}

[

〈φL|
∏

i∈S

Âi[σi]|α〉
]

|σS〉, (9.19)

and similarly |w̃E
α 〉, where {|α〉} are the states spanning the auxiliary state space on the cut

bond. Normalizing the states |ψ̃〉, |w̃S
α〉 and |w̃E

α 〉 we obtain the representation

|ψ〉 =
M
∑

α=1

λα|wS
α〉|wE

α 〉 (9.20)

where in λα the factors resulting from the normalization are absorbed. The relationship to
reduced density matrices is as detailed in Sec. 9.1.

9.4 TEBD Simulation Algorithm

Let us now express the TEBD simulation algorithm in the language of the previous section.
In the original exposition of the algorithm [23], one starts from a representation of a quantum
state where the coefficients for the states are decomposed as a product of tensors,

ψσ1,...,σL
=

∑

α1,...,αL−1

Γ[1]σ1
α1

λ[1]
α1

Γ[2]σ2
α1α2

λ[2]
α2

Γ[3]σ3
α2α3

· · ·Γ[L]σL
αL−1

. (9.21)

It is of no immediate concern to us how the Γ and λ tensors are constructed explicitly
for a given physical situation. Let us assume that they have been determined such that
they approximate the true wave function close to the optimum obtainable within the class
of wave functions having such coefficients; this is indeed possible as will be discussed below.
There are, in fact, two ways of doing it, within the framework of DMRG (see below), or by
a continuous imaginary time evolution from some simple product state, as discussed in Ref.
[17].
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Figure 9.5. Bipartitioning by cutting bond l between sites l and l + 1.

Let us once again attempt a visualization; the (diagonal) tensors λ[i], i = 1, . . . , L − 1
are associated with the bonds i, whereas Γ[i], i = 2, . . . , L − 1 links (transfers) from bond i
to bond i − 1 across site i. Note that at the boundaries (i = 1, L) the structure of the Γ is
different, a point of importance in the following. The sums run over M states |αi〉 living in
auxiliary state spaces on bond i. A priori, these states have no physical meaning here.

The Γ and λ tensors are constructed such that for an arbitrary cut of the system into a
part Sl of length l and a part EL−l of length L− l at bond l, the Schmidt decomposition for
this bipartite splitting reads

|ψ〉 =
∑

αl

λ[l]
αl
|wSl

αl
〉|wEL−l

αl
〉, (9.22)

with
|wSl

αl
〉 =

∑

α1,...,αl−1

∑

σ1,...,σl

Γ[1]σ1
α1

λ[1]
α1

· · ·Γ[l]σl
αl−1αl

|σ1〉 ⊗ · · · ⊗ |σl〉, (9.23)

and

|wEL−l
αl

〉 =
∑

αl,...,αL−1

∑

σl+1,...,σL

Γ
[l+1]σl+1
αlαl+1 λ[l+1]

αl+1
· · ·Γ[L]σL

αL−1
|σl+1〉 ⊗ · · · ⊗ |σL〉, (9.24)

where |ψ〉 is normalized and the sets of {|wSl
αl
〉} and {|wEL−l

αl
〉} are orthonormal. This implies,

for example, that
∑

αl

(λ[l]
αl

)2 = 1. (9.25)

We can see that (leaving aside normalization considerations for the moment) this represen-
tation may be expressed as a matrix product state if we choose for Âi[σi] =

∑

α,β A
i
αβ [σi]|α〉〈β|

Ai
αβ [σi] = Γ

[i]σi

αβ λ
[i]
β , (9.26)

except for i = 1, where we choose

A1
αβ [σ1] = fαΓ

[1]σ1

β λ
[1]
β , (9.27)

and for i = L, where we choose
AL

αβ [σL] = Γ[L]σL
α gβ . (9.28)

The vectors fα and gβ are normalised vectors which must be chosen in conjunction with the
boundary states |φL〉 and |φR〉 so as to produce the expansion (9.21) from this choice of the
Âi. Specifically, we require

|φL〉 =
∑

α

fα|α〉 (9.29)

|φR〉 =
∑

β

g∗β |β〉, (9.30)
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where |α〉 and |β〉 are the states forming the same orthonormal basis in the auxiliary spaces
on bonds 0 and L used to express Ai

αβ . In typical implementations of the algorithm it is
common to take fα = gα = δα,1. Throughout the rest of the article we take this as the
definition for gα and fα, as this allows us to treat the operators on the boundary identically
to the other operators for the purposes of the simulation protocol. For the same reason we

define a vector λ
[0]
α = δα,1.

In the above expression we have grouped Γ and λ such that the λ reside on the right
of the two bonds linked by Γ. There is another valid choice for the Âi, which will produce
identical states in the original system, and essentially the same procedure for the algorithm.
If we set

Ãi
αβ [σi] = λ[i−1]

α Γ
[i]σi

αβ , (9.31)

except for i = 1, where we choose

Ã1
αβ [σ1] = fαΓ

[1]σ1

β , (9.32)

and for i = L, where we choose

ÃL
αβ [σL] = λ[L−1]

α Γ[L]σL
α gβ , (9.33)

then the same choice of boundary states produces the correct coefficients. Here we have
grouped Γ and λ such that the λ reside on the left of the two bonds linked by Γ. It is
also important to note that any valid choice of fα and gβ that produces the expansion
(9.21) specifically excludes the use of periodic boundary conditions. While generalizations
are feasible, they lead to a much more complicated formulation of the TEBD simulation
algorithm and will not be pursued here.

To conclude the identification of states, let us consider normalization issues. The condition
(9.15) is indeed fulfilled for our choice of Ai[σi], because we have from (9.24) for a splitting
at l that

|wEL−(l−1)
αl−1 〉 =

∑

αlσl

Γ[l]σl
αl−1αl

λ[l]
αl
|σl〉 ⊗ |wEL−l

αl
〉

=
∑

αlσl

Al
αl−1αl

[σl]|σl〉 ⊗ |wEL−l
αl

〉, (9.34)

so that from the orthonormality of the sets of states {|wEL−(l−1)
α 〉}M

α=1, {|σl〉}Nsite
σl=1 and {|wEL−l

γ 〉}M
γ=1,

∑

σl

Âl[σl]Â
†
l [σl] =

∑

αβγ

∑

σl

Al
αγ [σl](A

l
βγ [σl])

∗|α〉〈β|

=
∑

αβ

〈wEL−(l−1)

β |wEL−(l−1)
α 〉|α〉〈β|

=
∑

αβ

δαβ |α〉〈β| = I. (9.35)

Let us now consider the time evolution for a typical (possibly time-dependent) Hamiltonian in
strongly correlated systems that contains only short-ranged interactions, for simplicity only
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nearest-neighbor interactions here:

Ĥ =
∑

i odd

F̂i,i+1 +
∑

j even

Ĝj,j+1, (9.36)

Fi,i+1 and Gj,j+1 are the local Hamiltonians on the odd bonds linking i and i + 1, and the
even bonds linking j and j+ 1. While all F and G terms commute among each other, F and
G terms do in general not commute if they share one site. Then the time evolution operator
may be approximately represented by a (first order) Trotter expansion as

e−iĤδt =
∏

i odd

e−iF̂i,i+1δt
∏

j even

e−iĜj,j+1δt + O(δt2), (9.37)

and the time evolution of the state can be computed by repeated application of the two-
site time evolution operators exp(−iĜj,j+1δt) and exp(−iF̂i,i+1δt). This is a well-known
procedure in particular in Quantum Monte Carlo[40] where it serves to carry out imaginary
time evolutions (checkerboard decomposition).

The TEBD simulation algorithm now runs as follows[17, 23]:

1. Perform the following two steps for all even bonds (order does not matter):

(i) Apply exp(−iĜl,l+1δt) to |ψ(t)〉. For each local time update, a new wave function
is obtained. The number of degrees of freedom on the “active” bond thereby
increases, as will be detailed below.

(ii) Carry out a Schmidt decomposition cutting this bond and retain as in DMRG
only those M degrees of freedom with the highest weight in the decomposition.

2. Repeat this two-step procedure for all odd bonds, applying exp(−iF̂l,l+1δt).

3. This completes one Trotter time step. One may now evaluate expectation values at
selected time steps, and continues the algorithm from step 1.

Let us now consider the computational details.
(i) Consider a local time evolution operator acting on bond l, i.e. sites l and l+ 1, for a state
|ψ〉. The Schmidt decomposition of |ψ〉 after partitioning by cutting bond l reads

|ψ〉 =

M
∑

αl=1

λ[l]
αl
|wSl

αl
〉|wEL−l

αl
〉. (9.38)

Using Eqs. (9.23), (9.24) and (9.34), we find

|ψ〉 =
∑

αl−1αlαl+1

∑

σlσl+1

λ[l−1]
αl−1

Al
αl−1αl

[σl]A
l+1
αlαl+1

[σl+1]|wSl−1
αl−1〉|σl〉|σl+1〉|w

EL−(l+1)
αl+1 〉.(9.39)

We note, that if we identify |wSl−1
αl−1〉 and |wEL−(l+1)

αl+1 〉 with DMRG system and environment
block states |wS

ml−1
〉 and |wE

ml+1
〉, we have a typical DMRG state for two blocks and two sites

|ψ〉 =
∑

ml−1

∑

σl

∑

σl+1

∑

ml+1

ψml−1σlσl+1ml+1
|wS

ml−1
〉|σl〉|σl+1〉|wE

ml+1
〉 (9.40)
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with
ψml−1σlσl+1ml+1

=
∑

αl

λ[l−1]
ml−1

Al
ml−1αl

[σl]A
l+1
αlml+1

[σl+1]. (9.41)

The local time evolution operator on site l, l + 1 can be expanded as

Ûl,l+1 =
∑

σlσl+1

∑

σ′
l
σ′

l+1

U
σ′

lσ
′
l+1

σlσl+1 |σ′lσ′l+1〉〈σlσl+1| (9.42)

and generates |ψ′〉 = Ûl,l+1|ψ〉, where

|ψ′〉 =
∑

αl−1αlαl+1

∑

σlσl+1

∑

σ′
l
σ′

l+1

λ[l−1]
αl−1

Al
αl−1αl

[σ′l]A
l+1
αlαl+1

[σ′l+1]U
σlσl+1

σ′
l
σ′

l+1
|wSl−1

αl−1〉|σl〉|σl+1〉|w
EL−(l+1)
αl+1 〉.

This can also be written as

|ψ′〉 =
∑

αl−1αl+1

∑

σlσl+1

Θ
σlσl+1
αl−1αl+1 |w

Sl−1
αl−1〉|σl〉|σl+1〉|w

EL−(l+1)
αl+1 〉, (9.43)

where
Θ

σlσl+1
αl−1αl+1 = λ[l−1]

αl−1

∑

αlσ
′
l
σ′

l+1

Al
αl−1αl

[σ′l]A
l+1
αlαl+1

[σ′l+1]U
σlσl+1

σ′
l
σ′

l+1
. (9.44)

(ii) Now a new Schmidt decomposition identical to that in DMRG can be carried out for |ψ′〉:
cutting once again bond l, there are now MNsite states in each part of the system, leading to

|ψ′〉 =

MNsite
∑

αl=1

λ̃[l]
αl
|w̃Sl

αl
〉|w̃EL−l

αl
〉. (9.45)

In general the states and coefficients of the decomposition will have changed compared to
the decomposition (9.38) previous to the time evolution, and hence they are adaptive. We
indicate this by introducing a tilde for these states and coefficients. As in DMRG, if there
are more than M non-zero eigenvalues, we now choose the M eigenvectors corresponding to

the largest λ̃
[l]
αl

to use in these expressions. The error in the final state produced as a result is
proportional to the sum of the magnitudes of the discarded eigenvalues. After normalization,
to allow for the discarded weight, the state reads

|ψ′〉 =
M
∑

αl=1

λ[l]
αl
|wSl

αl
〉|wEL−l

αl
〉. (9.46)

Note again that the states and coefficients in this superposition are in general different from
those in Eq. (9.38); we have now dropped the tildes again, as this superposition will be the
starting point for the next time evolution (state adaption) step. As is done in DMRG, to
obtain the Schmidt decomposition reduced density matrices are formed, e.g.

ρ̂E = TrS |ψ′〉〈ψ′|

=
∑

σl+1σ′
l+1αl+1α′

l+1

|σl+1〉|wαl+1
〉〈wα′

l+1
|〈σ′l+1|





∑

αl−1σl

Θ
σlσl+1
αl−1αl+1(Θ

σlσ
′
l+1

αl−1α′
l+1

)∗



 .(9.47)
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Figure 9.6. Typical two-block two-site setup of DMRG as used here.

If we now diagonalise ρ̂E , we can read off the new values of Al+1
αlαl+1

[σl+1] because the

eigenvectors |wEL−l
αl

〉 obey

|wEL−l
αl

〉 =
∑

σl+1αl+1

Al+1
αlαl+1

[σl+1]|σl+1〉|w
EL−(l+1)
αl+1 〉. (9.48)

We also obtain the eigenvalues, (λ
[l]
αl

)2. Due to the asymmetric grouping of Γ and λ into A
discussed above, a short calculation shows that the new values for Al

αl−1αl
[σl] can be read off

from the slightly more complicated expression

λ[l]
αl
|wSl

αl
〉 =

∑

αl−1σl

λ[l−1]
αl−1

Al
αl−1αl

[σl]|wSl−1
αl−1〉|σl〉. (9.49)

The states |wSl
αl
〉 are the normalized eigenvectors of ρ̂S formed in analogy to ρ̂E .

The key point about the TEBD simulation algorithm is that a DMRG-style truncation to
keep the most relevant density matrix eigenstates (or the maximum amount of entanglement)
is carried out at each time step. This is in contrast with time-dependent DMRG methods up
to now, where the basis states were chosen before the time evolution, and did not “adapt”
to optimally represent the final state.

9.5 DMRG and matrix-product states

Typical normalized DMRG states for the combination of two blocks S and E and two single
sites (Fig. 9.6) have the form

|ψ〉 =
∑

ml−1

∑

σl

∑

σl+1

∑

ml+1

ψml−1σlσl+1ml+1
|wS

ml−1
〉|σl〉|σl+1〉|wE

ml+1
〉 (9.50)

which can be Schmidt decomposed as

|ψ〉 =
∑

ml

λ[l]
ml
|wS

ml
〉|wE

ml
〉. (9.51)

It has been known for a long time[35, 36] that a DMRG calculation retaining M block
states produces M ×M matrix-product states for |ψ〉. Consider the reduced basis transfor-
mation to obtain the states of DMRG block S that terminates on bond l from those of the
block terminating on bond l − 1 and those on a single site l,

〈wS
ml−1

σl|wS
ml
〉 ≡ Al

ml−1ml
[σl], (9.52)
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such that

|wS
ml
〉 =

∑

ml−1σl

Al
ml−1ml

[σl]|wS
ml−1

〉 ⊗ |σl〉. (9.53)

The reduced basis transformation matrices Al[σl] automatically obey Eq. (9.15), which here
ensures that {|wS

ml
〉} is an orthonormal set provided {|wS

ml−1
〉} is one, too. We may now

use Eq. (9.53) for a backward recursion to express |wS
ml−1

〉 via |wS
ml−2

〉 and so forth. There
is a complication as the number of block states for very short blocks is less than M . For
simplicity, we assume that M is chosen such that we have exactly N Ñ

site = M . If we stop the
recursion at the shortest block of size Ñ that has M states we obtain

|wS
ml
〉 =

∑

m
Ñ+1...ml−1

∑

σ1...σl

AÑ+1
m

Ñ
m

Ñ+1
[σÑ+1] . . . A

l
ml−1ml

[σl]|σ1 . . . σl〉,

where we have boundary-site states on the first Ñ sites indexed by mÑ ≡ {σ1 . . . σÑ}.
Similarly, for the DMRG block E we have

〈wE
ml+1

σl+1|wE
ml
〉 ≡ Al+1

mlml+1
[σl+1], (9.54)

such that (again having Ñ boundary sites) a recursion gives

|wE
ml
〉 =

∑

ml+1...m
L−Ñ

∑

σl+1...σL

Al+1
mlml+1

[σl+1] . . . A
L−Ñ
m

L−Ñ−1m
L−Ñ

[σL−Ñ ]|σl+1 . . . σL〉,(9.55)

with boundary-site states on the last Ñ sites indexed by mL−Ñ ≡ {σL−Ñ+1 . . . σL}.
A comparison with Eqs. (9.16), (9.18) and (9.19) shows that DMRG generates position-

dependent M ×M matrix-product states as block states for a reduced Hilbert space of M
states; the auxiliary state space to a bond is given by the Hilbert space of the block at
whose end the bond sits. This physical meaning attached to the auxiliary state spaces and
the fact that for the shortest block the states can be labeled by good quantum numbers (if
available) ensures through (9.52) and (9.54) that they carry good quantum numbers for all
block sizes. The big advantage is that using good quantum numbers allows us to exclude a
large amount of wave function coefficients as being 0, drastically speeding up all calculations
by at least one, and often two orders of magnitude. Moreover, as is well known, DMRG can
be easily adapted to periodic boundary conditions, which is in principle also possible for the
TEBD algorithm but cumbersome to implement. Fermionic degrees of freedom also present
no specific problem, and in particular, there exists no negative sign problem of the kind that
is present in Quantum Monte Carlo methods.

The effect of the finite-system DMRG algorithm[2] is now to shift the two free sites
through the chain, growing and shrinking the blocks S and E as illustrated in Fig. 9.7. At
each step, the ground state is redetermined and a new Schmidt decomposition carried out
in which the system is cut between the two free sites, leading to a new truncation and new
reduced basis transformations (2 matrices A adjacent to this bond). It is thus a sequence of
local optimization steps of the wave function oriented towards an optimal representation of
the ground state. Typically, after some “sweeps” of the free sites from left to right and back,
physical quantities evaluated for this state converge. While comparison of DMRG results to
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Figure 9.7. Finite-system DMRG algorithm. Block growth and shrinkage.
For the adaptive time-dependent DMRG, replace ground state optimization by
local time evolution.

exact results shows that one often comes extremely close to an optimal representation within
the matrix state space (which justifies the usage of the DMRG algorithm to obtain them), it
has been pointed out and numerically demonstrated[36, 41] that finite-system DMRG results
can be further improved and better matrix product states be produced by switching, after
convergence is reached, from the S••E scheme (with two free sites) to an S•E scheme and to
carry out some more sweeps. This point is not pursued further here, it just serves to illustrate
that finite-system DMRG for all practical purposes comes close to an optimal matrix product
state, while not strictly reaching the optimum.

As the actual decomposition and truncation procedure in DMRG and the TEBD simula-
tion algorithm are identical, our proposal is to use the finite-system algorithm to carry out
the sequence of local time evolutions (instead of, or after, optimizing the ground state), thus
constructing by Schmidt decomposition and truncation new block states best adapted to a
state at any given point in the time evolution (hence adaptive block states) as in the TEBD
algorithm, while maintaining the computational efficiency of DMRG. To do this, one needs
not only all reduced basis transformations, but also the wave function |ψ〉 in a two-block two-
site configuration such that the bond that is currently updated consists of the two free sites.
This implies that |ψ〉 has to be transformed between different configurations. In finite-system
DMRG such a transformation, which was first implemented by White[28] (“state prediction”)
is routinely used to predict the outcome of large sparse matrix diagonalizations, which no
longer occur during time evolution. Here, it merely serves as a basis transformation. We will
outline the calculation for shifting the active bond by one site to the left.

Starting from

|ψ〉 =
∑

mS
l−1

∑

σl

∑

σl+1

∑

mE
l+1

ψmS
l−1σlσl+1mE

l+1
|wS

ml−1
〉|σl〉|σl+1〉|wE

ml+1
〉, (9.56)

one inserts the identity
∑

mE
l
|wE

ml
〉〈wE

ml
| obtained from the Schmidt decomposition (i.e. den-

sity matrix diagonalization) to obtain

|ψ〉 =
∑

mS
l−1

∑

σl

∑

mE
l

ψmS
l−1σlm

E
l
|wS

ml−1
〉|σl〉|wE

ml
〉, (9.57)
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where

ψmS
l−1σlm

E
l

=
∑

mE
l+1

∑

σl+1

ψmS
l−1σlσl+1mE

l+1
Al+1

mlml+1
[σl+1]. (9.58)

After inserting in a second step the identity
∑

mS
l−2σl−1

|wS
ml−2

σl−1〉〈wS
ml−2

σl−1|, one ends up

with the wave function in the shifted bond representation:

|ψ〉 =
∑

mS
l−2

∑

σl−1

∑

σl

∑

mE
l

ψmS
l−2σl−1σlm

E
l
|wS

ml−2
〉|σl−1〉|σl〉|wE

ml
〉, (9.59)

where

ψmS
l−2σl−1σlm

E
l

=
∑

mS
l−1

ψmS
l−1σlm

E
l
Al−1

ml−2ml−1
[σl−1]. (9.60)

9.6 Adaptive time-dependent DMRG

The adaptive time-dependent DMRG algorithm which incorporates the TEBD simulation
algorithm in the DMRG framework is now set up as follows (details on the finite-system
algorithm can be found in Ref. [2]):

0. Set up a conventional finite-system DMRG algorithm with state prediction using the
Hamiltonian at time t = 0, Ĥ(0), to determine the ground state of some system of
length L using effective block Hilbert spaces of dimension M . At the end of this stage
of the algorithm, we have for blocks of all sizes l reduced orthonormal bases spanned
by states |ml〉, which are characterized by good quantum numbers. Also, we have all
reduced basis transformations, corresponding to the matrices A.

1. For each Trotter time step, use the finite-system DMRG algorithm to run one sweep
with the following modifications:

i) For each even bond apply the local time evolution Û at the bond formed by the
free sites to |ψ〉. This is a very fast operation compared to determining the ground
state, which is usually done instead in the finite-system algorithm.

ii) As always, perform a DMRG truncation at each step of the finite-system algorithm,
hence O(L) times.

(iii) Use White’s prediction method to shift the free sites by one.

2. In the reverse direction, apply step (i) to all odd bonds.

3. As in standard finite-system DMRG evaluate operators when desired at the end of some
time steps. Note that there is no need to generate these operators at all those time
steps where no operator evaluation is desired, which will, due to the small Trotter time
step, be the overwhelming majority of steps.
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Figure 9.8. Time evolution of the real part of nearest-neighbor correlations in
a Bose-Hubbard model with instantaneous change of interaction strength using
the adaptive time-dependent DMRG. The different curves for different M are
shifted (parameters as in section 9.2).

The calculation time of adaptive time-dependent DMRG scales linearly in L, as opposed
to the static time-dependent DMRG which does not depend on L. The diagonalization of the
density matrices (Schmidt decomposition) scales as N3

siteM
3; the preparation of the local time

evolution operator as N6
site, but this may have to be done only rarely e.g. for discontinuous

changes of interaction parameters. Carrying out the local time evolution scales as N4
siteM

2;
the basis transformation scales as N2

siteM
3. As M ≫ Nsite typically, the algorithm is of order

O(LN3
siteM

3) at each time step.

9.7 Case study: time-dependent Bose-Hubbard model

In this section we present some results of calculations on the Bose-Hubbard Hamiltonian
introduced in section 9.2 which have been carried out, using modest computational resources
and an unoptimized code (this concerns in particular the operations on complex matrices and
vectors). In the following, Trotter time steps down to δt = 5 × 10−4 in units of ~/J were
chosen. It is also important to note that in contrast to the DMRG calculations shown earlier
for conventional time-dependent DMRG up to Nsite = 14 states per site were used as a local
site basis for all calculations in this Section.

Comparing the results of the adaptive time-dependent DMRG for the Bose-Hubbard
model with the parameters chosen as in section 9.2 with the static time-dependent DMRG
we find that the convergence in M is much faster, for the nearest neighbor correlations it sets
in at about M = 40 (Fig. 9.8) compared to M = 100 for the static method (Fig. 9.3).
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Figure 9.9. Time evolution of the real part of nearest-neighbor correlations in
a Bose-Hubard model with instantaneous change of interaction strength using
the adaptive time-dependent DMRG but for a larger system L = 32 with N =
32 bosons. The different curves for different M are shifted, comparing M =
30, 50, 70 to M = 80 respectively.

This faster convergence in M enables us to study larger systems than with static time-
dependent DMRG (Fig. 9.9). In the L = 32 system considered here, we encountered severe
convergence problems using static time-dependent DMRG. By contrast, in the new approach
convergence sets in for M well below 100, which is easily accessible numerically. Let us
remark that the number M of states which have to be kept does certainly vary with the
exact parameters chosen, depending if the state can be approximated well by matrix product
states of a low dimension. At least in the case studied here, we found that this dependency
is quite weak. We expect (also from studying the time evolution of density matrix spectra)
that the model dependence of M is roughly similar as in the static case.

Similar observations are made both for local occupancy (a simpler quantity than nearest-
neighbor correlations) and longer-ranged correlations (where we expect less precision). Mov-
ing back to the parameter set of section 9.2, we find as expected that the result for the local
occupancy (Fig. 9.10) is converged for the same M leading to convergence in the nearest-
neighbor correlations. In contrast, if we consider the correlation 〈b†b〉 between sites further
apart from each other the numerical results converge more slowly under an increase of M
than the almost local quantities. This can be seen in Fig. 9.11 where the results for M = 40
and M = 50 still differ a bit for times larger than t ≈ 2~/J .

The controlling feature of DMRG is the density matrix formed at each DMRG step – the
decay of the density-matrix eigenvalue spectrum and the truncated weight (i.e. the sum of all
eigenvalues whose eigenvectors are not retained in the block bases) control its precision. In
the discarded weight for the Bose-Hubbard model of section 9.2 shown in Fig. 9.12, we can
observe that the discarded weight shrinks drastically, going from M = 20 to M = 50. This
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Figure 9.10. Time evolution of the occupancy of the second site. Parameters
as used in section 9.2 (L = 8, N = 8). The different curves for different M
are shifted.
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Figure 9.11. Time evolution of the real part of the correlation between site 2
and 7. Parameters as used in section 9.2 with N = 8 particles. The different
curves for different M are shifted. Note that the plot starts at t = 1 (parameters
were changed at t = 0).
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Figure 9.12. Discarded weight for different values of M . Parameters chosen
as in section 9.2.

supports the idea that the system shows a fast convergence in M . Even more importantly,
the discarded weight grows in time, as the state that was originally a ground state at t < 0
decays into a superposition of many eigenstates of the system at t > 0. However, in particular
for larger M , it stays remarkably small throughout the simulation, indicating that adaptive
time-dependent DMRG tracks the time-evolving state with high precision. Moving to the
detailed spectrum of the density matrix (shown in Fig. 9.13 for the left density matrix when
the chain is symmetrically decomposed into S and E), the corresponding distribution of the
eigenvalues can be seen to be approximately exponential. In agreement with the increasing
truncation error, one also observes that the decay becomes less steep as time grows. Yet,
we still find a comparatively fast decay of the eigenvalue spectrum at all times, necessary to
ensure the applicability of TEBD and adaptive time-dependent DMRG respectively.

Note for all results shown that the unusually large number of states per site (Nsite = 14)
which would not occur in Hubbard or Heisenberg models could there be translated directly
into longer chains or larger state spaces (larger M) for the same computational effort, given
that the algorithm is O(LN3

siteM
3). In that sense, we have been discussing an algorithmically

hard case, but in fermionic models DMRG experience tells us that M has to be taken much
larger in fermionic systems. For the fermionic Hubbard model, with Nsite = 4, more than
M = 300 is feasible with the unoptimized code, and much higher M values would be possible
if optimizations were carried out. This should be enough to have quantitatively reliable time-
evolutions for fermionic chains, while of course not reaching the extreme precision one is used
to in DMRG for the static case. As the algorithmic cost is dominated by (NsiteM)3, the
product NsiteM is an important quantity to look at: while current TEBD implementations
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Figure 9.13. Eigenvalue spectrum of the left reduced density matrix at different
times for a symmetric S/E decomposition. Parameters chosen as in section 9.2,
M = 50 states retained.

range at 100 or less, adaptive time-dependent DMRG using good quantum numbers runs at
the order of 1000 (and more).

Let us conclude this section by pointing out that at least one improvement can be incor-
porated almost trivially into this most simple version of adaptive time-dependent DMRG.
Since we have used a first-order Trotter decomposition, we expect that for fixed M results
of measurements at a fixed time converge linearly with respect to the time step δt chosen,
as the error per time step scales as δt2, but the number of time steps needed to reach the
fixed time grows as δt−1. In other words, the Trotter error is inversely proportional to the
calculation time spent. This can indeed be observed in results such as presented in Fig. 9.14.

It is very easily and at hardly any algorithmic cost that a second order Trotter de-
composition can be implemented, leading to errors of order δt2. The second order Trotter
decomposition reads[40]

e−iĤδt = e−iĤoddδt/2e−iĤevenδte−iĤoddδt/2, (9.61)

where we have grouped all local Hamiltonians on odd and even bonds into Ĥodd and Ĥeven

respectively. At first sight this seems to indicate that at each Trotter time step three (in-
stead of two) moves (“zips”) through the chain have to be carried out. However, in many
applications at the end of most time steps, the Hamiltonian does not change, such that for

almost all time steps, we can contract the second e−iĤoddδt/2 from the previous and the first

e−iĤoddδt/2 from the current time step to a standard e−iĤoddδt time step. Hence, we incur
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Figure 9.14. Convergence in the Trotter time of the real part of the nearest-
neighbor correlations between site 2 and 3 in a Bose-Hubbard model with in-
stantaneous change with the parameters chosen as in section 9.2 at a fixed time.

almost no algorithmic cost. This is also standard practice in Quantum Monte Carlo [44];
following QMC, second order Trotter evolution is set up as follows:

1. Start with a half-time step e−iĤoddδt/2.

2. Carry out successive time steps e−iĤevenδt and e−iĤoddδt.

3. At measuring times, measure expectation values after a e−iĤoddδt time step, and again

after a time step e−iĤevenδt, and form the average of the two values as the outcome of
the measurement.

4. At times when the Hamiltonian changes, do not contract two half-time steps into one
time step.

In this way, additional algorithmic cost is only incurred at the (in many applications rare)
times when the Hamiltonian changes while strongly reducing the Trotter decomposition error.
Even more precise, but now at an algorithmic cost of factor 5 over the first or second-order
decompositions, would be the usage of fourth-order Trotter decompositions (leading to 15 zips
through the chain per time step, of which 5, however, can typically be eliminated)[42, 43].

9.8 Conclusion

The TEBD algorithm for the simulation of slightly entangled quantum systems, such as
quantum spin chains and other one-dimensional quantum systems, was originally developed
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in order to establish a link between the computational potential of quantum systems and
their degree of entanglement, and serves therefore as a good example of how concepts and
tools from quantum information science can influence other areas of research, in this case
quantum many-body physics.

While exporting ideas from one field of knowledge to another may appear as an exciting
and often fruitful enterprise, differences in language and background between researchers in
so far separated fields can also often become a serious obstacle to the proper propagation
and full assimilation of such ideas. In this paper we have translated the TEBD algorithm
into the language of matrix product states. This language is a natural choice to express the
DMRG algorithm – which, for over a decade, has dominated the simulation of one-dimensional
quantum many-body systems. In this way, we have made the TEBD algorithm fully accessible
to the DMRG community. On the other hand, this translation has made evident that the
TEBD and the DMRG algorithms have a number of common features, a fact that can be
exploited.

We have demonstrated that a very straightforward modification of existing finite-system
DMRG codes to incorporate the TEBD leads to a new adaptive time-dependent DMRG al-
gorithm. Even without attempting to reach the computationally most efficient incorporation
of the TEBD algorithm into DMRG implementations, the resulting code seems to perform
systematically better than static time-dependent DMRG codes at very reasonable numerical
cost, converging for much smaller state spaces, as they change in time to track the actual state
of the system. On the other hand, while it presents no new conceptual idea, the new code is
also significantly more efficient than existing embodiments of the TEBD, for instance thanks
to the way DMRG handles good quantum numbers. While we have considered bosons as an
example, as in standard DMRG fermionic and spin systems present no additional difficulties.
Various simple further improvements are feasible, and we think that adaptive time-dependent
DMRG can be applied not only to problems with explicitly time-dependent Hamiltonians,
but also to problems where the quantum state changes strongly in time, such as in systems
where the initial quantum state is far from equilibrium. The method should thus also be of
great use in the fields of transport and driven dissipative quantum systems.
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Chapter 10

The Single Atom Transistor: Introduction

The Single Atom Transistor setup consists of a single spin-1/2 impurity atom, localised at a
particular lattice site in a 1D setup and probe atoms which are mobile along the axis of the
lattice, and initially situated to one side of the impurity. It is so named because interactions
between the single localised impurity and the probe atoms can be engineered so that the
transport of the probe atoms is switched based on the state of the impurity atom. In one
state the impurity acts as a single atom mirror, blocking transport for the probe atoms, and
in the other it is transparent to the flow of probes. Thus, the state of the impurity atom
is “amplified” in the sense of becoming entangled with the (potentially macroscopic) state
of the probe atoms, measurements on which can then be used as a single-shot Quantum
Non-Demolition readout of the impurity’s spin.

The primary interest in this system is two-fold. Firstly, recent experimental advances with
1D lattices [1–3] and controlled coupling of two atoms into molecular states via magnetic
[4] and optical [5] Feshbach resonances make such a system experimentally feasible. This
would allow the study of the properties of this system, including the QND measurements
it facilitates and interesting macroscopic superpositions it produces. Secondly, and equally
as experimentally measurable, the transport properties of this system for weak coupling
between the impurity and the probes, where the current passing the impurity is non-zero,
can be highly sensitive to interactions between the probe atoms. Many-body effects become
especially important in this system because the coherence times are very long, and because
the probe atoms can be made strongly or weakly interacting depending on the initial density
and lattice parameters. These many-body effects can be studied using the numerical methods
described in part II of this thesis, where the dynamics of the system can be exactly computed
in regimes which have proved otherwise inaccessible via analytical methods.

In the publication in chapter 11 the original introduction to the Single Atom Transistor
is given, detailing its basic properties for single probe atoms and for many fermionic probe
atoms, and giving some examples of the many body results for Bosonic probe atoms that
we can calculate for this system using time-dependent numerical simulations. These results
include the current of atoms passing the impurity as a function of time, and various properties
of an initial Mott Insulator state as it is allowed to “melt” through the impurity site, forming
a quasi-condensate.

Chapter 12 provides more information on the application of the time-dependent numerical
methods to the SAT system. In particular, the time dependence of currents through the SAT
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is discussed in greater detail as a result of more recent data, which is made accessible by the
optimisation of the numerical method for fixed total particle number (as presented in chapter
8). Many more numerical results are then presented, both for initial configurations in which
the cloud of probe atoms has zero mean momentum, and in the regime where the initial cloud
of probe atoms is accelerated towards the impurity atom. The quantitative results produced
in this chapter should be measurable in experiments, and give a good example of interesting
many-body physics that is made accessible by the numerical methods discussed in part II.
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A Single Atom Transistor in a 1D Optical Lattice†

Phys. Rev. Lett. 93, 140408 (2004)
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We propose a scheme utilising a quantum interference phenomenon to switch the
transport of atoms in a 1D optical lattice through a site containing an impurity atom.
The impurity represents a qubit which in one spin state is transparent to the probe
atoms, but in the other acts as a single atom mirror. This allows a single-shot quantum
non-demolition measurement of the qubit spin.

Coupling of a spin 1/2 system to Bosonic and Fermionic modes is one of the fundamental
building blocks of quantum optics and solid state physics. Motivated by the recent progress
with cold atoms in 1D [1], we consider a spin 1/2 atomic impurity which is used to switch
the transport of either a 1D Bose-Einstein Condensate (BEC) or a 1D degenerate Fermi gas
initially situated to one side of the impurity. In one spin state the impurity is transparent to
the probe atoms, whilst in the other it acts as single atom mirror, prohibiting transport via
a quantum interference mechanism reminiscent of electromagnetically induced transparency
(EIT) [2] (Fig. 11.1a). Observation of the atomic current passing the impurity can then be
used as a quantum non-demolition (QND) measurement [3] of its internal state, which can be
seen to encode a qubit, |ψq〉 = α|↑〉+β|↓〉. If a macroscopic number of atoms pass the impurity,

†The primary contribution of the author of the present thesis to this publication was the numerical cal-
culation of results for Tonks gases, although he also acted as a discussion partner on all other aspects of the
work.



156 Publication: A Single Atom Transistor in a 1D Optical Lattice

"
"

(a) (b)

J

q
b

b

b q

q
J

Figure 11.1. (a) A spin 1/2 impurity used as a switch: in one spin state it is
transparent to the probe atoms, but in the other it acts as a single atom mirror.
(b) Implementation of the SAT as a separately trapped impurity q with probe
atoms b in an optical lattice.

then the system will be in a macroscopic superposition, |Ψ(t)〉 = α|↑〉|φ↑(t)〉 + β|↓〉|φ↓(t)〉,
which can form the basis for a single shot readout of the qubit spin. Here, |φσ(t)〉 denotes
the state of the probe atoms after evolution to time t, given that the qubit is in state σ
(Fig. 11.1a). In view of the analogy between state amplification via this type of blocking
mechanism and readout with single electron transistors (SET) used in solid state systems [4],
we refer to this setup as a Single Atom Transistor (SAT).

We propose the implementation of a SAT using cold atoms in 1D optical lattices [5–8]. We
consider probe atoms b to be loaded in the lattice to the left of a site containing the impurity
atom, which is trapped by a separate (e.g., spin-dependent [8]) potential (Fig. 11.1b). The
passage of b atoms past the impurity q is then governed by the spin-dependent effective
collisional interaction Ĥint =

∑

σ Ueff,σ b̂
†
0b̂0q̂

†
σ q̂σ. By making use of a quantum interference

mechanism, we engineer complete complete blocking (effectively Ueff → ∞) for one spin state
and complete transmission (Ueff → 0) for the other. Below we first consider the detailed
scattering processes involved in the transport of a single particle through the SAT, and then
generalise this to interacting many-particle systems including a 1D Tonks gas.

The quantum interference mechanism needed to engineer Ueff can be produced using an
optical or magnetic Feshbach resonance [9]. For the optical case a Raman laser drives a

transition on the impurity site, 0, from the atomic state b̂†0q̂
†
σ|vac〉 via an off-resonant excited

molecular state to a bound molecular state back in the lowest electronic manifold m̂†
σ|vac〉

(Fig. 11.2a). We denote the effective two-photon Rabi frequency and detuning by Ωσ and
∆σ respectively. For the magnetic case, the Hamiltonian will have the same form, but with
Ωσ the coupling between open and closed channels and ∆σ the magnetic field detuning [9].
The Hamiltonian for our system is then given (~ ≡ 1) by Ĥ = Ĥb + Ĥ0, with

Ĥb = −J
∑

〈ij〉
b̂†i b̂j +

1

2
Ubb

∑

j

b̂†j b̂j
(

b̂†j b̂j − 1
)

Ĥ0 =
∑

σ

[

Ωσ

(

m̂†
σ q̂σ b̂0 + H.c.

)

+ ∆σm̂
†
σm̂σ

]

+
∑

σ

[

Uqb,σ b̂
†
0q̂

†
σ q̂σ b̂0 + Ubm,σ b̂

†
0m̂

†
σm̂σ b̂0

]

, (11.1)

where the operators b̂ obey the standard commutation (anti-commutation) relations for
Bosons (Fermions). Ĥb gives a Hubbard Hamiltonian for the b atoms with tunnelling matrix
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Figure 11.2. (a) The optical Feshbach setup couples the atomic state b̂†0q̂
†
σ|vac〉

(in a particular motional state quantised by the trap) to a molecular bound state

of the Born-Oppenheimer potential, m̂†
σ|vac〉, with effective Rabi frequency Ωσ

and detuning ∆σ. (b) A single atom passes the impurity (I→III) via the two

dressed states (II), |+〉 = b̂†0q̂
†
σ|vac〉 + m̂†

σ|vac〉 and |−〉 = b̂†0q̂
†
σ|vac〉 − m̂†

σ|vac〉
and quantum interference gives rise to an effective tunnelling rate Jeff,σ.

elements J giving rise to a single Bloch band with dispersion relation ε(k) = −2J cos ka
(a is the lattice spacing), and collisional interactions (which are non-zero only for Bosons)
given by Ubb = 4π~

2abb

∫

d3x |wj(x)|4 /mb, where wj(x) is the Wannier-function for a particle

localized on site j, abb is the scattering length for b atoms and mb is their mass. Ĥ0 describes
the additional dynamics due to the impurity on site 0, where atoms b and q are converted
to a molecular state with effective Rabi frequency Ωσ and detuning ∆σ, and the last two
terms describe background interactions, Uαβ,σ for two particles α, β ∈ {q, b,m}, which are
typically weak. This model is valid for Uαβ , J,Ω,∆ ≪ ω, where ω is the energy separation
between Bloch bands. Because the dynamics for the two spin channels qσ can be treated
independently, in the following we will consider a single spin channel, and drop the subscript
σ.

For off-resonant laser driving (Ω ≪ |∆|), the Feshbach resonance enhances the interaction
between b and q atoms, giving the familiar result Ueff = Uqb − Ω2/∆. However, for resonant
driving (∆ = 0) the physical mechanism changes, and the effective tunnelling Jeff of an
atom b past the impurity (Fig. 11.2b, I → III) is blocked by quantum interference. On

the impurity site, laser driving mixes the states b̂†0q̂
†|vac〉 and m†|vac〉, forming two dressed

states with energies ε± = (Uqb)/2± (U2
qb/4 + Ω2)1/2 (Fig. 11.2b, II). The two resulting paths

for a particle of energy ε destructively interfere so that for large Ω ≫ J and Uqb = 0,
Jeff = −J2/(ε+ Ω)− J2/(ε−Ω) → 0. This is analogous to the interference effect underlying
EIT [2], and is equivalent to having an effective interaction Ueff → ∞. In addition, if we
choose ∆ = Ω2/Uqb, the paths constructively interfere, screening the background interactions
to produce perfect transmission (Ueff → 0).

For a more detailed analysis, we solve the Lippmann-Schwinger equation exactly for scat-
tering from the impurity of an atom b with incident momentum k > 0 in the lowest Bloch-
band. The resulting forwards and backwards scattering amplitudes, f (±)(k) respectively,
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are

f (±)(k) =

[

1 +

(

iaUeff(k)

v(k)

)±1
]−1

, (11.2)

where the energy dependent interaction Ueff = Uqb + Ω2/(ε(k) − ∆) and the phase-velocity

v(k) = ∂ε/∂k = 2Ja sin ka. The corresponding transmission probabilities, T (k) =
∣

∣f (+)(k)
∣

∣

2
,

are plotted in Fig. 11.3a as a function of ε(k) for various Ω and ∆. For Ω ∼ J , these are Fano-
profiles with complete reflection at ε(k) = ∆ and complete transmission at ε(k) = ∆−Ω2/Uqb.
The SAT thus acts as an energy filter, which is widely tunable via the laser strength and
detuning used in the optical Feshbach setup. For Ω > 4J , T is approximately independent
of k, and we recover the previous result, i.e., that transport can be completely blocked or
permitted by appropriate selection of ∆. Note that this mechanism survives when higher
energy Bloch bands are included, and is resistant to loss processes, which are discussed
below.

We now consider the full many-body dynamics of N probe atoms b initially prepared in
the ground state in a trap (box) of M lattice sites on the left side of the impurity q. We
are then interested in the expectation value of the steady state coherent current Î = dN̂R/dt

(where N̂R =
∑

j>0 b̂
†
j b̂j is the number of particles on the right side of the impurity, see

Fig. 11.3b), which depends on the laser parameters, the initial filling factor on the left of the
impurity, n = N/M , and, for Bosons, the interaction strength, Ubb. We first consider the case
of a dilute or noninteracting gas, before treating both interacting Bosons, and non-interacting
Fermions with arbitrary n.

For a dilute noninteracting Bose quasi-condensate (n≪ 1, Ubb = 0), or for any very dilute
gas, (where the momentum distribution is very narrow), the behaviour is very similar to that
of a single particle. If the gas is quickly accelerated to a finite momentum k, e.g., by briefly
tilting the lattice, then the atoms will coherently tunnel through the impurity according to

the scattering amplitudes f (±)(k). The resulting current I ∝ N
∣

∣f (+)(k)
∣

∣

2
v(k), where v(k)

is the velocity of a Bloch-wave with momentum k.

For a Fermi gas the equations of motion are linear and may be solved exactly provided
Ubm = Uqb. Scattering from the impurity then occurs independently for each particle in the
initial Fermi sea, with scattering amplitudes f (±)(k) for k ≤ kF , where the Fermi momentum
kF = πn/a. After a short transient period, on the order of the inverse tunnelling rate 1/J ,
the system establishes a roughly constant flux of particles through the impurity (Fig. 11.3b),
with a time-averaged current for resonant driving ∆ = 0 given by

I0 =
1

πa

∫ −2J+εF

−2J
dεf(ε)T (ε)v(ε) (11.3)

=
J

π



V −
G+arctan V G−

G2
+−V

+G−arctanh V G+

G2
−+V

(G2
+ +G2

−)/(G+G−)



 ,

with εF the Fermi Energy in the initial state, f(ε) the density of states per site (left of the
impurity), 2G2

± ≡ (1 + Ω4/4J4)1/2 ± 1 and V ≡ εF /2J = 2 sin2(nπ/2).

For a Tonks gas of strongly interacting Bosons (Ubb/J ≫ 1 with n ≤ 1) we expect to
observe similar behaviour to that observed for Fermions. In this limit, double occupation
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Figure 11.3. (a) SAT transmission coefficients T ≡ |f (+)|2 for a particle b
as a function of its energy ε(k) for Ω/J = 4,∆ = 0, Uqb/J = 0 (solid line),
Ω/J = 8,∆/J = 4, Uqb/J = 2 (dashed line), Ω/J = 1,∆ = 0, Uqb/J = 2
(dotted), and Ω/J = 1,∆ = 0, Uqb/J = 0 (dash-dot). (b) The number of
particles to the right of the impurity, NR(t), from exact numerical calculations
for Bosons in the limit Ubb/J → ∞ (dashed lines) and Fermions (solid lines)
in a 1D Mott Insulator state with n = 1, for ∆ = 0, Ω/J = 0, 1, 2.

of a site can be neglected, and the behaviour can be mapped onto Fermionic particles via
a Jordan-Wigner transformation (JWT) [10]. The Hamiltonian is then the same up to a

nonlinear phase factor Ω → Ω(−1)N̂R , which essentially causes Ω to change sign when a
particle passes the impurity. The contribution of this phase factor should be small for weak
coupling, Ω ≪ J , and also for strong coupling, where no particles will tunnel through the
impurity, i.e., NR ≃ 0.

For the general case of many Bosons we perform exact numerical integration of the time de-
pendent Schrödinger equation for the Hamiltonian (11.1) using Vidal’s algorithm for “slightly
entangled quantum states” [11]. This algorithm selects adaptively a decimated Hilbert space
on which a state is represented, by retaining at each time step only those basis states that
carry the greatest weight in Schmidt decompositions taken from every possible bipartite split-
ting of the system into two contiguous parts. A sufficiently large decimated Hilbert space
is then selected so that the results of the simulations are essentially exact. For each set of
parameters we first prepared the initial state via an imaginary time evolution which found
the ground state for atoms in a box trap on the left of the impurity. Then, considering
initially a single impurity atom q on the site 0 and unoccupied sites to the right of that
site, we calculated the time evolution of the system until it had reached a quasi-steady state
behaviour. In the simulations we obtained the behavior at finite repulsion Ubb, and tested

the effects of the nonlinear phase factor (−1)N̂R for strongly interacting Bosons, Ubb → ∞.

In Fig. 11.3b we plot the number of particles on the right of the impurity NR(t) for
Fermions and for Bosons with Ubb/J → ∞, starting from a Mott Insulator (MI) state with
n = 1, for ∆ = 0, Ω/J = 0, 1, 2. For Ω = 0 the results for Bosons and Fermions are identical,
whilst for Ω/J = 1, 2, we observe an initial period for the Bosons in which the current is
similar to that for the Fermionic systems, after which the Bosons settle into a steady state
with a significantly smaller current. The initial transient period for the Bosons incorporates
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Figure 11.4. (a) The steady state current of b atoms through the impurity
as function of the initial filling factor n for ∆ = 0 and Ω/J = 0, 1, 2. The
solid lines show the analytic result I0 for Fermions, whereas the dashed lines
show the exact numerical result for hard-core Bosons with Ubb/J → ∞. For
Ω = 0 these results are indistinguishable. (b, c) The steady state current as
function of the Rabi-frequency Ω/J on resonance ∆ = 0 for (b) unit filling and
(c) half filling. The solid lines show the analytic result for Fermions, whereas
the dashed (dotted) lines give numerical results for Bosons with Ubb/J = 20
(Ubb/J = 4).

the settling to steady state of firstly the molecule dynamics, and secondly the momentum
distribution on the right of the impurity. These transients are suppressed if Ω is ramped
slowly to its final value from a large value Ω > 4J .

The dependence of the steady state current on the initial filling factor n is depicted in
Fig. 11.4a for resonant driving with Ω/J = 0, 1, 2. For Ω = Uqb = Ubm = 0, the current
I0 = 2J sin2(nπ/2)/π is identical for Fermions and hard-core Bosons (Ubb → ∞), as we
expect from the exact correspondence given in this limit by the JWT. For Fermions with
weak, resonant laser driving, the main features of the Fano profile (Fig. 11.3a) are observed
in correspondence with the integral in (11.3). For example, a plateau in I0(n) is observed
near n = arccos(−∆/2J)/π = 1/2, as the Fermi Energy is raised past ε ∼ ∆ = 0, which
corresponds to the zero of the transmission probability T (ε). Good agreement is also observed
with the result for Bosons in this limit with n < 1/2, whilst for larger n Bosons are blocked
better, with a factor of 2 − 3 in the steady state currents.

The enhanced blocking for Bosons is also seen in Fig. 11.4b showing the steady state
current against Ω for resonant driving and n = 1. It is clear from these figures together that
this difference is a feature of the regime n > 1/2, Ω ∼ J , which is directly linked to the phase
factor of (−1)NR arising in the JWT. As Ω is increased and fewer particles pass the impurity,
the results for Fermions and Bosons again converge as expected. For small Ω there are small
differences between Bosons with finite Ubb/J = 4 and Ubb/J → ∞, with currents always lower
than the equivalent fermionic current, owing largely to the smaller mean squared momentum
in the initial state. For large driving, Ω ≫ 4J the basic interference process is extremely
efficient for Bosons and Fermions, and we observe complete blocking or transmission by
quantum interference for the proper choice of ∆.
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In Fig. 11.5 we investigate the time evolution of 30 hard-core Bosons (Ubb → ∞) in an
initial MI state, which are released through a SAT which is switched at t = 0. For Ω = 0,
we see that as the gas expands the momentum distribution becomes peaked as a quasi-
condensate is formed with k = π/2a, which consists of a coherent superposition of particles
propagating to the right and holes propagating to the left as the MI state melts [6]. This
mode grows outwards from the edge of the initial distribution, and contains at its peak ∼

√
N

particles, as is expected for such dynamically formed quasi-condensates in a 1D lattice [12].
In contrast, for Ω/J = 0.5, the momentum distribution is broader, and the quasi-condensate
mode contains many fewer particles. The mode also consists of distinct branches, holes in
the melting MI propagating to the left and particles to the right, which are initially coherent,
but become decoupled at t ∼ 12/J . For larger Ω this behaviour becomes more pronounced,
and for Ω > 4J , the MI state essentially remains unchanged.

The melting of a MI in this way can be used as the basis for a convenient single-shot
measurement of the spin state of q. If q is in a superposition of spin states, only one of which
will permit transport of the b atoms, then after some propagation time, the system will be in
a macroscopic superposition of distinct quantum phases (MI and quasi-condensates). These
are distinguishable because if the b atoms are released from the lattice, the quasi-condensate
will produce an interference pattern, whereas the MI state will not. The visibility of the
resulting pattern can thus be used to measure the qubit spin.

A remarkable feature of the SAT is its resistance to both two- and three-body loss
processes on the impurity site. Spontaneous emissions from the off-resonant excited molecu-
lar state in the case of an optical Feshbach resonance amount to a two-body loss process at a
rate ∼ γ2B in the states |+〉 and |−〉. These small rates are further suppressed in the blocking
regime J, γ2B ≪ Ω, with the resulting decoherence rate γdec ∝ J2γ2Bn/Ω

2, with n the mean
site occupation of the b atoms. Collisions of atoms b with molecules m [13] are strongly
suppressed in the Tonks gas regime, as well as for Fermions. For a weakly interacting Bose
gas the corresponding three-body loss rate, γ3B, is again strongly suppressed in the blocking
regime (J, γ3B ≪ Ω) with γdec ∝ J4γ3Bn

2/Ω4.

Parallels may be drawn between the SAT and other systems coupled to fermionic and
bosonic modes. These include the QND-readout of a single photon in cavity-quantum electro-
dynamics [14], electron counting statistics [15], and the transport of electrons past impurities
such as quantum dots [16] (although there particles are normally initially present on both
sides of the impurity). However, the long decoherence times for atoms in optical lattices im-
ply coherent transport over longer timescales than is observed in these other systems, which
are inherently dissipative. In addition, blocking and/or energy filtering by one or more SATs
could be applied as tools in the study of Bose and Fermi gases in a 1D lattice.

Work in Innsbruck is supported by the Austrian Science Foundation, EU Networks and
the Institute for Quantum Information. DJ is supported by the IRC on quantum information
processing.
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We study the dynamics of many atoms in the recently proposed Single Atom Transis-
tor setup [A. Micheli, A. J. Daley, D. Jaksch, and P. Zoller, Phys. Rev. Lett. 93, 140408
(2004)] using recently developed numerical methods. In this setup, a localised spin 1/2
impurity is used to switch the transport of atoms in a 1D optical lattice: in one state the
impurity is transparent to probe atoms, but in the other acts as a single atom mirror.
We calculate time-dependent currents for bosons passing the impurity atom, and find
interesting many body effects. These include substantially different transport properties
for bosons in the strongly interacting (Tonks) regime when compared with fermions, and
an unexpected decrease in the current when weakly interacting probe atoms are initially
accelerated to a non-zero mean momentum. We also provide more insight into the ap-
plication of our numerical methods to this system, and discuss open questions about the
currents approached by the system on long timescales.

12.1 Introduction

The recently proposed Single Atom Transistor (SAT) setup [1] provides new opportunities to
experimentally examine the coupling of a spin-1/2 system with bosonic and fermionic modes.

†The author of the present thesis performed the calculations for Fermions, for the Tonks gas and for zero
coupling to the impurity atom in this article, and collaborated with SRC and DJ on the remaining calculations.
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Such couplings form fundamental building blocks in several areas of physics. For example,
atoms passing through a cavity can allow the quantum non-demolition (QND) readout of
single-photon states in quantum optics [2], and in solid state physics, such systems occur
in Single Electron Transistors [3], in studies of electron counting statistics [4] and in the
transport of electrons past impurities such as quantum dots [5].

In the SAT setup, which was motivated by the significant experimental advances made
recently with cold atoms in 1D [6–8], a single spin-1/2 impurity atom, q, is used to switch
the transport of a gas of cold atoms in a 1D optical lattice (Fig. 12.1). The impurity atom,
which can encode a qubit on two internal spin states, is transparent to a gas of probe atoms
in one spin state (the “on” state), but acts as a single atom mirror in the other (the “off”
state), prohibiting transport via a quantum interference mechanism (Fig. 12.1). Observation
of probe atoms that are initially situated to one side of the impurity, and which can constitute
either a 1D degenerage Bose or Fermi gas, can then be used as a QND measurement [9] of
the qubit state of the impurity atom |ψq〉 = α|↑〉 + β|↓〉 [1] (see Fig. 12.1).

The long coherence times associated with atoms in optical lattices allow many-body effects
to contribute coherently to the transport properties over longer timescales than is observed in
other systems where bosonic and fermionic modes couple to a spin 1/2 system. This produces
novel physics in which the current of atoms passing the impurity, especially in a regime of
weak coupling between probe atoms and impurity, is sensitive to interactions between the
probe atoms [1]. These effects could be directly observed in experiments, for example, via
measurements of the density of probe atoms on each site of the impurity atom as a function
of time.

In this article we present a detailed numerical analysis of these currents, making use of
recently developed numerical methods [10] to calculate the dynamics of the bosonic probe
atoms by directly integrating the many-body Schrödinger equation in 1D on an adaptively
truncated Hilbert space. When these currents are compared to analytical calculations of
transmission coefficients for single particles passing the impurity atom and the related cur-
rents for a non-interacting 1D Fermi gas, significant interaction effects are observed, as first
discussed in Ref. [1]. Here we provide new insight into the time dependence of these currents,
and what conclusions can be drawn from our numerical results on different timescales. We
then calculate the initial currents for atoms at zero temperature diffusing past the impurity
(where the initial mean momentum of the 1D gas, 〈k̂〉t=0 = 0, with k̂ is the operator cor-
responding to the quasi-momentum in the lowest Bloch band and t the time), and explore
the effects observed for different interaction strengths of bosonic probe atoms. We then also
investigate the currents for fermions and bosons when the probe atoms are initially kicked
(〈k̂〉t=0 6= 0). This study is complementary to the analytical study of the SAT that is given
in recent article by Micheli et al. [11].

In section 12.2 we discuss the basic physics of the SAT, and give a summary of the
dynamics found in [1] for single particles and non-interacting fermions. Then we present
in detail the numerical techniques that we use to compute the exact time evolution of the
many-body 1D system. The time-dependence of the resulting currents is discussed in section
12.3, followed by a presentation of the values of the initial steady state currents, both in the
diffusive (〈k̂〉t=0 = 0) and kicked (〈k̂〉t=0 6= 0) regimes. The conclusions are then summarised
in section 12.4.



12.2 Overview 167

Figure 12.1. A Single Atom Transistor (SAT) in a 1D optical lattice: A
single spin-1/2 impurity atom q separately trapped at a particular lattice site is
transparent to probe atoms b in one state (“on”), but in the other acts as a single
atom mirror (“off”). The probe atoms can either diffuse past the impurity site
with mean initial momentum 〈k̂〉t=0 = 0 or can be accelerated to a finite initial
momentum 〈k̂〉t=0 6= 0 by a kick of strength pk.

12.2 Overview

12.2.1 The Single Atom Transistor

The System

As described in section 12.1, we consider probe atoms b, which are loaded into an optical
lattice [12–15] with strong confinement in two dimensions, so that the atoms are restricted to
move along a lattice in 1D. The probe atoms are initially situated to the left of a site contain-
ing an impurity atom q, which is trapped independently (by a species or spin-dependent [16]
potential), fixing it to a particular site while the probe atoms are free to move. In order to pro-
duce the “on” and “off” states of the SAT, we must appropriately engineer the effective spin-
dependent interaction between the probe atoms and the impurity, Hint =

∑

σ Ueff,σ b̂
†
0b̂0q̂

†
σ q̂σ.

Here, b̂†i and q̂† are second-quantised creation operators for the b and q atoms respectively,
obeying the standard commutation (anti-commutation) relations for bosons (fermions) and
the site index i is chosen so that the impurity is on site i = 0. These interactions can be
controlled using either a magnetic [17, 18] or optical [19] Feshbach resonance. For simplicity
we discuss the case of an optical Feshbach resonance, depicted in Fig. 12.2. Here, lasers
are used to drive a transition from the atomic state b̂†0q̂

†
σ|vac〉 via an off-resonant excited

molecular state to a bound molecular state back in the lowest electronic manifold m̂†
σ|vac〉

on the impurity site, i = 0 (see Fig. 12.2). The two-photon Rabi frequency for this process
is denoted Ωσ and the Raman detuning ∆σ, and throughout this article we use units with
~ = 1.
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Figure 12.2. An optical Feshbach resonance for a single spin channel (Ω = Ωσ,

∆ = ∆σ): One probe atom and the impurity atom, in an atomic state b̂†0q̂
†
σ|vac〉

which is quantised by the trapping potential of the lattice site, are coupled by
an optical Feshbach setup to a bound molecular state, m†

σ|vac〉, of the Born-
Oppenheimer potential, V (r) (note that here the Born-Oppenheimer potential
is modified by the trapping potential of the lattice site [17]. The coupling has
the effective two-photon Rabi frequency Ω, and detuning ∆.

Single Atoms

We consider initially a single probe atom passing the impurity. If the coupling to the molecular
state is far off resonance (Ωσ ≪ |∆σ|), the effect of the Feshbach resonance is to modify the
interaction between the b and q atoms in the familiar manner, with Ueff = Uqb +Ω2

σ/∆σ. This
can be used to screen the background interaction between these atoms, Uqb, so that the “on”
state of the SAT (Ueff = 0) can be produced by choosing ∆↑ = −Ω2

↑/Uqb.

If the coupling is resonant (∆↓ = 0), then the physical mechanism is different, and the
passage of a probe atom b past the impurity is blocked by quantum interference. The mixing
of the unbound atomic state and the molecular state on the impurity site produces two
dressed states

1√
2

(

b̂†0q̂
†
↓|vac〉 ±m†

↓|vac〉
)

, (12.1)

with energies

ε± =
Uqb

2
±
(

U2
qb

4
+ Ω2

↓

)1/2

. (12.2)

The two resulting paths for a particle of energy ε then destructively interfere so that when
Ω↓ ≫ J , where J is the normal tunneling amplitude between neighbouring lattice sites, and
Uqb = 0, the effective tunnelling amplitude past the impurity (see Fig. 12.3) is

Jeff =

(

− J2

ε+ Ω↓
− J2

ε− Ω↓

)

→ 0. (12.3)
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This is reminiscent of the interference effect which underlies Electromagnetically Induced
Transparency [20], and corresponds to the effective interaction Ueff → ∞ required for the
“off” state of the SAT.

In Refs. [1, 11], the Lippmann-Schwinger equation is solved exactly for scattering from
the impurity of an atom b with incident momentum k > 0 in the lowest Bloch-band, where
the energy of the particle ε(k) = −2J cos(ka), with a the lattice spacing. The resulting
transmission probabilities T (p) are in the form of Fano Profiles [21]. For Ωσ ∼ J these have
a minimum corresponding to complete reflection for ε(k) = −∆σ and complete transmission
for ε(k) = −∆σ − Ω2

σ/Uqb. For Ωσ > 4J , the transmission coefficients are approximately
independent of k, and so complete transparency of the impurity atom is obtained for ∆σ =
−Ω2

σ/Uqb and complete blocking of the incident atoms for ∆ = 0.

Many Atoms

The treatment of this system for many atoms is similar to the single atom case, but the
motion of the probe atoms in the lattice, except on the impurity site, is governed by a (Bose-
) Hubbard Hamiltonian [13]. As the two spin channels for the impurity atom, q can be treated
independently, we will consider only a single spin channel qσ, and drop the subscript in the
notation throughout the remainder of the article [1]. The Hamiltonian for the system is then
given (with ~ ≡ 1) by Ĥ = Ĥb + Ĥ0, with

Ĥb = −J
∑

〈ij〉
b̂†i b̂j +

1

2
Ubb

∑

j

b̂†j b̂j
(

b̂†j b̂j − 1
)

,

Ĥ0 = Ω
(

m̂†q̂b̂0 + h.c
)

− ∆m̂†m̂+ Uqbb̂
†
0q̂

†q̂b̂0 + Ubmb̂
†
0m̂

†m̂b̂0. (12.4)

Here, Hb gives a Hubbard Hamiltonian for the b atoms with tunnelling matrix elements
J , and collisional interactions Ubb. For fermions, Ubb = 0, whereas for bosons Ubb =
4π~

2abb

∫

d3x |wj(x)|4 /mb, with wj(x) the Wannier-function on site j, and abb and mb the
scattering length and mass of b atoms respectively. H0 describes the dynamics in the pres-
ence of the impurity on site 0, where atoms b and q are converted to a molecular state with
effective Rabi frequency Ω and detuning ∆, and the final two terms describe background
interactions, Uαβ for two particles α, β ∈ {q, b,m}, which are typically weak and will be
neglected in our treatment. This single-band model is valid in the limit for Uαβ , J,Ω,∆ ≪ ω,
where ω is the energy separation between Bloch bands, an inequality which is fulfilled in
current experiments. The robustness of the SAT with respect to loss processes is discussed
in [1].

In the rest of this article, we will study the current of atoms past the impurity site that
develops as a function of time, and how this current depends on the interaction between
probe atoms and on interactions between the probe atoms and the impurity.

12.2.2 Atomic Currents through the SAT

To analyse the case of many atoms passing the impurity site, we consider the probe atoms
b to be prepared initially to the left of the impurity, in a ground state corresponding to a
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Figure 12.3. The sequence as (left) a probe atom approaches the impurity site
and is located on site i = −1, (centre) the probe atom is on the impurity site,
i = 0, and (right) the probe atom has tunnelled past the impurity and is located
on site i = 1. Quantum interference in this process because the two dressed
states on the impurity site, |±〉 = (b̂†0q̂

†
σ|vac〉 ± m†

σ|vac〉)/
√

2 give rise to two
separate paths with equal and opposite amplitude.

1D box potential. The current of atoms passing the impurity is I(t) = dN̂R/dt, where NR is

the mean number of atoms to the right of the impurity, NR = 〈∑j>0 b̂
†
j b̂j〉. For a sufficiently

large number of atoms in the initial cloud, this current is generally found to rapidly settle
into an initial steady state current, Iss, on relatively short timescales (tJ ∼ 1) (see section
12.3.1 for further discussion of steady state currents for bosons).

For a non-interacting Fermi gas at zero temperature, the currents can be calculated exactly
when Ubm = Uqb, as the equations of motion are linear. Scattering from the impurity occurs
independently for each particle in the initial Fermi sea, and after a short transient period of
the order of the inverse tunnelling rate 1/J , a steady state current Iss is established. This
can be calculated either by integrating the single-particle transmission probabilities [1, 11] or
by direct numerical integration of the Heisenberg equations.

For a non-interacting and very dilute Bose gas, the situation will be identical to consid-
ering a single particle. However, for higher densities, many-boson effects become important,
and additionally for non-zero interactions the situation becomes even more complicated. In
the limit Ubb/J → ∞ in 1D (the Tonks gas regime) it is usually possible to replace the

bosonic operators b̂i, b̂
†
i by fermionic operators f̂i, f̂

†
i using a Jordan-Wigner transformation

[22]. However, in this case the resulting Hamiltonian,

Ĥ = −J
∑

〈ij〉
f̂ †i f̂j − ∆m̂†m̂+ (−1)N̂LΩ

(

m̂†q̂f̂0 + h.c
)

+Uqbf̂
†
0 q̂

†q̂f̂0 + Ubmf̂
†
0m̂

†m̂f̂0, (12.5)

contains a nonlinear phase factor resulting from the coupling on the impurity site, (−1)N̂L ,

where N̂L =
∑

j<0 f̂
†
j f̂j is the operator for the number of atoms to the left of the impurity

site. For Ω = 0, the boson currents are exactly the same as the currents for noninteracting
fermions as 〈b̂†i b̂i〉 = 〈f̂ †i f̂i〉. For finite Ω it is not clear what role the phase factor will play
in determining the system dynamics, although for sufficiently large Ω ≫ J we again expect
very little current to pass the impurity.
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Thus, for the intermediate regime Ω ∼ J , and for the case of finite interaction strength
U/J there are no known analytical solutions for the currents. For this reason, we specifically
study these regimes in this paper, using near-exact numerical methods.

12.2.3 Time-Dependent Numerical Algorithm for 1D Many-Body Systems

The algorithm that we use to compute the time evolution of our many body system for bosonic
probe atoms was originally proposed by Vidal [10]. This method allows near-exact integration
of the many body Schrödinger equation in 1D by an adaptive decimation of the Hilbert space,
provided that the Hamiltonian couples nearest-neighbour sites only and that the resulting
states are only “slightly entangled” (this will be explained in more detail below). Recently
both this algorithm [23], and similar methods proposed by Verstrate and Cirac [24] have been
generalised to the treatment of master equations for dissipative systems and systems at finite
temperature, and progress has been made applying the latter method to 2D systems [25].

In 1D, these methods rely on a decomposition of the many-body wavefunction into a
matrix product representation of the type used in Density Matrix Renormalisation Group
(DMRG) calculations [26], which had previously been widely applied to find the ground state
in 1D systems. The time dependent algorithms have now been incorporated within DMRG
codes [27], and also been used to study the coherent dynamics of a variety of systems [28].
In our case, we write the coefficients of the wavefunction expanded in terms of local Hilbert
spaces of dimension S,

|Ψ〉 =
S
∑

i1i2...iM=1

ci1i2...iM |i1〉 ⊗ |i2〉 ⊗ . . .⊗ |iM 〉, (12.6)

as a product of tensors

ci1i2...iM =

χ
∑

α1...αM−1

Γ[1] i1
α1

λ[1]
α1

Γ[2] i2
α1α2

λ[2]
α2

Γ[2] i2
α3α4

. . .Γ[M ] iM
αM−1

. (12.7)

These are chosen so that the tensor λ
[l]
α specifies the coefficients of the Schmidt decomposition

[29] for the bipartite splitting of the system at site l,

|ψ〉 =

χl
∑

α=1

λ[l]
α |φ[1...l]

α 〉|φ[l+1...M ]
α 〉, (12.8)

where χl is the Schmidt rank, and the sum over remaining tensors specify the Schmidt

eigenstates, |φ[1...l]
α 〉 and |φ[l+1...M ]

α 〉. The key to the method is two-fold. Firstly, for many
states corresponding to a low-energy in 1D systems we find that the Schmidt coefficients

λ
[l]
α , ordered in decreasing magnitude, decay rapidly as a function of their index α (this is

what we mean by the state being “slightly entangled”) [10]. Thus the representation can
be truncated at relatively small χ and still provide an inner product of almost unity with
the exact state of the system |Ψ〉. Secondly, when an operator acts on the local Hilbert
state of two neighbouring sites, the representation can be efficiently updated by changing the
Γ tensors corresponding to those two sites, a number of operations that scales as χ3S3 for
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sufficiently large χ [10]. Thus, we represent the state on a systematically truncated Hilbert
space, which changes adaptively as we perform operations on the state.

In order to simulate the time evolution of a state, we perform a Suzuki-Trotter decom-
position [30] of the time evolution operator exp(−iĤt), which is applied to each pair of sites
individually in small timesteps δt. Initial states can also be found using an imaginary time
evolution, i.e., the repeated application of the operator exp(−Ĥδt), together with renormal-
isation of the state.

In this paper, results are not only produced using the original algorithm as presented
in [10], but also using an optimised version in which the Schmidt eigenstates are forced to
correspond to fixed numbers of particles. This allows us to make use of the total number
conservation in the Hamiltonian to substantially increase the speed of the code, and also
improve the scaling with χ and S. With this number conserving code we are able to compute
results with much higher values of χ, however we also find that for insufficiently large χ, the
results from this code become rapidly unphysical, in contrast to the original code (see section
12.3.1).

In implementations of this method we vary the value of χ to check that the point at which
the representation is being truncated does not affect the final results. A useful indicator for
convergence of the method is the sum of the Schmidt coefficients discarded in each time
step, although in practice the convergence of calculated quantities (such as the single particle

density matrix, 〈b̂†i b̂j〉) are normally used. This is also discussed further in section 12.3.1

For bosons on an optical lattice we must also choose the dimension S of the local Hilbert
space, which corresponds to one more than the maximum number of atoms allowed on one
lattice site. For simulation of the SAT, we allow a variable dimension of the local Hilbert
space Sl, as we must consider the state of the molecule on the impurity site in addition to the
probe atoms. Allowing such a variable dimension dramatically reduces the simulation time,
which scales as χ3

∑

l S
3
l when χ≫ S, and scales proportional to S4 when χ is small. For a

Bose gas with finite U/J we usually take Sl = 6 away from the impurity site, and S0 = 12
on the impurity site, whereas simulations of a Tonks gas can be performed with Sl = 2 away
from the impurity site and S0 = 4 on the impurity site.

12.3 Numerical Results

In section 12.3.1 we discuss the time dependence of the current for bosons and the applicability
of our numerical methods in different regimes. We establish the existence of an initial steady
state current, ISS that appears on a timescale tJ ∼ 1, and discuss the observation of a second
steady state current I0, observed in some cases on a timescale tJ ∼ 10. In sections 12.3.2
and 12.3.3 we then present our numerical results for ISS for the case where the initial cloud
diffuses past the impurity site, and the case where the initial cloud is kicked respectively.

We are primarily interested in the behaviour of the current through the SAT when it is
used in the “off” state, i.e., we choose ∆ = 0. To enhance clarity of the results, we also
choose Ubq = Ubm = 0.

In each case, we considered an initial cloud of between N = 1 and N = 30 atoms, confined
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Figure 12.4. The number of atoms to the right of the impurity site, NR as a
function of dimensionless time tJ for a Bose gas in the Tonks limit (Ubb/J →
∞) with Ω/J = 1, n = N/M = 1, and varying number of states retained in the
method, χ = 10, 20, 30, 40, 50, 60, 70 (lines from bottom to top). These results
are from the original simulation method.

on M = 30 lattice sites situated immediately to the left of the impurity site. The initial state
used corresponds to the ground state, |φ0〉 of a Bose-Hubbard model with a box trap.

Our total grid for the time evolution consisted of 61 lattice sites, with the 30 rightmost
sites initially unoccupied, and the results we present are, except for very small systems,
independent of the size of the initial cloud and of the grid size. Fermionic results are derived
from exact integration of the Heisenberg equations of motion, whereas bosonic results are
near-exact simulations as described in section 12.2.3.

12.3.1 Time Dependence of the current for bosonic probe atoms

The mean number of probe atoms on the right of the impurity, NR is plotted as a function
of time, t, in Fig. 12.4 for a Tonks gas (U/J → ∞) with Ω/J = 1 and initial state of density
n = N/M = 1. These results were calculated with the original simulation algorithm, and
it is clear from the figure that the current settles into an initial steady state value ISS on
the timescale tJ ∼ 1. However, as is typical for bosonic probe atoms with n > 0.5, there
exists a knee in the curve at a time tknee(χ), leading to a new and final steady state current,
which we will denote I0. The time tknee(χ) depends on the initial density, n, and coupling,
Ω, and as can be seen from this figure, we require a high value of χ to find the exact time.
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Figure 12.5. The number of atoms to the right of the impurity site, NR as a
function of dimensionless time tJ for a Bose gas in the Tonks limit (Ubb/J →
∞) with Ω/J = 1, n = N/M = 1. This plot shows a comparison of results
from the original method (dashed lines, χ = 50, 70, c.f. Fig. 12.4), and from
the number conserving method (solid lines, χ = 50, 100, 200, 300).

For n = 1,Ω/J = 1, tknee(χ) appears to converge to a value between tJ = 9 and tJ = 12
as χ is increased. It is clear that significant level of correlation, or entanglement between
the left and right hand side of the system (in the sense of the number of significant Schmidt
eigenvalues for a bipartite splitting) are involved in determining the dynamics leading the to
knee. However, the actual value of the steady state current I0 appears to converge for much
lower values of χ and there is essentially no change in this result from χ = 10 to χ = 70.

The interpretation of these results is more complex when they are compared with similar
results from the new, number conserving version of our code. In Fig. 12.5 we observe that the
behaviour diverges at the same value of tknee(χ), and even for χ = 300, the value of tknee(χ)
has only shifted a little further from where it was observed for χ = 70 with the original
version of the code. This confirms that the dynamics on this timescale are dominated by the
significant level of correlation, or entanglement between the left and right hand side of the
system.

In contrast to the steady state current I0 obtained using the original code, though, the
current in the number conserving simulations rapidly approaches 0, even for χ = 300. As can
be seen from the dotted line in Fig. 12.6, this behaviour occurs when the maximum sum of
squares of the Schmidt coefficients being discarded in each timestep, ελ =

∑

β>χ λ
2
β , reaches

a steady value on the order of 10−7, indicating that the simulation results from the number
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Figure 12.6. Comparison as a function of dimensionless time tJ of the
number of atoms to the right of the impurity site, NR, (solid line), and the
sum of squares of the discarded Schmidt eigenvalues, ελ =

∑

β>χ λ
2
β (dashed

line). These results are taken from the number conserving simulation method
with χ = 100, for a Bose gas in the Tonks limit (Ubb/J → ∞) with Ω/J = 1,
n = N/M = 1.

conserving code are probably not valid for t > tknee. Indeed, we observe the same behaviour
from the new simulation code with Ω = 0, where we know from Eq. 12.5 that the time
dependent current I(t) is equal to that for fermions, and should not decrease in this manner
(see currents for fermions in Ref. [1]). Interestingly, the original code, which produces the
steady state currents I0 at finite Ω reproduces the known result at Ω = 0 exactly even for
small values of χ, with a steady state current ISS and no knee.

Our conclusions from these results are as follows:

(i) We know that up to tknee our simulation results are exact, as they are unchanged in
the linear region with current ISS for χ = 20 → 300. As this regime lasts at least until
tJ ∼ 10, these results would be observable in an experimental implementation of the SAT.

(ii) As an impractically large value of χ would be required to reproduce the results exactly
on long timescales, we can not be certain what the final behaviour will be for t > tknee(χ =
300). This depends on clearly interesting phenomena that arise from strong correlations
between the left and right sides of the impurity site, and could include settling to a final
steady state current I0. These effects would also be observable in an experiment.

The expected final steady state values I0 are already discussed in Ref. [1], and so in
the remainder of this article we investigate the initial steady state currents ISS in various
parameter regimes.
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Figure 12.7. Steady state currents through the SAT ISS as a function of
the coupling between probe atoms and the impurity, Ω/J . These plots show the
comparison of a Bose gas with different interaction strengths U/J = 4 (dotted
line), U/J = 10 (dashed) and U/J → ∞ (solid), and a Fermi gas (dash-dot),
with (a) n = 1/2 and (b) n = 1. In both cases, ∆ = Uqb = Ubm = 0.

12.3.2 Diffusive evolution, with initial mean momentum (〈k̂〉t=0 = 0)

We first consider the motion of atoms past the impurity site in the diffusive regime, where
the initial state at t = 0 is the ground state of a Bose-Hubbard model on M = 30 lattice sites
in a box trap.

Dependence of the current on impurity-probe coupling, Ω

In Fig. 12.7 we show the initial steady state current ISS as a function of Ω/J for fermionic
probe atoms, and for bosonic probe atoms with Ubb/J = 4, 10,∞ and ∆ = 0. All of these
results decrease as expected with increasing Ω/J , and even for a relatively small Ω = 2J the
current is minimal in each case. At half filling (Fig. 12.7a), the results for the Tonks gas are
identical to the Fermi results for Ω = 0, but become substantially different as Ω increases,
with the currents in this regime greater for the bosons. At weaker interactions the currents
are smaller than the Tonks result at all Ω, but for Ω/J > 1 the currents for U/J = 4 are larger
than for a non-interacting Fermi gas. The variation in the currents for different interaction
strengths of bosons appears to be due to the broader initial momentum distributions that
occur at larger U/J . At unit filling (Fig. 12.7b), ISS is less dependent on the interaction
strength, with all of the bosonic results very close to one another, currents becoming larger
than that for fermions when Ω/J > 1.

Dependence of the current on interaction strength, U/J

The dependence of the initial steady state current ISS on the interaction strength for bosons
is depicted more clearly in Fig. 12.8, both at unit filling, n = 1, and half filling, n = 1/2 for
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Figure 12.8. Steady state currents through the SAT Iss as a function of
the interaction strength U/J for bosonic probe atoms initially at half-filling,
n = 1/2 (squares) and at unit filling, n = 1 (diamonds) with Ω/J = 1. The
equivalent results for the Tonks gas (U/J → ∞) and fermions are marked on
the right hand site of the plot. ∆ = Uqb = Ubm = 0.

Ω = J . At half filling the current increases with increasing U/J , which is due to the broader
initial momentum distribution produced by the higher interaction energies. In contrast, at
higher densities (here n = 1), the probe atoms are blocked better by the SAT for higher
interaction strengths, and ISS decreases. The key principle here is that bosons appear to
be better blocked when they approach the impurity individually. For high densities this is
achieved when large interaction strengths eliminate the higher occupancies of all lattice site
including the impurity site. For weaker interactions the bosons can swamp the transistor,
with one atom being bound to the impurity, whilst other probe atoms tunnel onto and past
the impurity site.

This effect is seen in Fig. 12.9, where the molecular occupation and average probe atom
occupation on the impurity site are shown for (a) U/J = 4 and (b) U/J = 10. We see
that as n increases, the molecular occupation becomes rapidly higher for U/J = 10 than for
U/J = 4, despite the larger occupation of probe atoms on the impurity site for U/J = 4.
This indicates that for U/J = 10 atoms arrive individually at the impurity site, where they
are coupled with the impurity atom into a molecular state, and their transport is efficiently
blocked. For U/J = 4, more than one atom enters the impurity site at once, leading to
a larger average probe atom occupation on the impurity site, but a comparatively small
molecular occupation.

It is important to note, however, that even when U/J = 4, the resulting currents are only
slightly larger than they are for non-interacting fermions. At higher interaction strengths
we then see an even stronger suppression of the steady state current for dense, strongly
interacting bosons. As Ω increases, both the molecular occupation and probe atom occupation
on the impurity site decrease (Fig. 12.9) as the probability of even a single atom tunnelling
onto the impurity site becomes small. For Ω > 2J the blocking mechanism of the SAT
functions extremely well even in the regime where the probe atoms are dense and weakly
interacting.
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Figure 12.9. Plot showing the average steady state occupation of the mole-
cular state (dashed lines) and the average steady state atomic occupation of
the impurity site (solid lines) for (a) U/J = 4 and (b) U/J = 10, as a func-
tion of (a, b 1) Ω/J with n = 1 and (a, b 2) n with Ω/J = 0.5. In all cases,
∆ = Uqb = Ubm = 0, and calculations were performed for M = 30.

Figure 12.10. Steady state currents through the SAT Iss as a function of
the initial density of atoms n = N/M . These plots show the comparison of a
Bose gas with different interaction strengths U/J = 4 (dotted line), U/J = 10
(dashed) and U/J → ∞ (solid), and a Fermi gas (dash-dot), with (a) Ω/J = 0.5
and (b) Ω/J = 1. In both cases, ∆ = Uqb = Ubm = 0.
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Dependence of the current on initial density, n

In Fig. 12.10 we show the dependence of the initial steady state current, ISS on the initial
filling factor n with (a) Ω/J = 0.5 and (b) Ω/J = 1. In both cases, the currents for bosons
of different interaction strengths are very similar, with the variations following the patterns
discussed in the preceding section. These results also agree well with the results for fermions
at small n and for n ∼ 1, but the plateau observed in fermionic currents near n ∼ 0.5 does
not occur in the currents for bosons. For fermions, this plateau arises from the transmission
profile of the SAT as a function of incoming momentum [1], and occurs when the Fermi
momentum is raised past the minimum in this transmission profile. For interacting bosons,
this correspondence between the momentum distribution of the gas and the transmission
profile is destroyed by many-body effects, and we see instead a smooth increase in the current.
This results in the bosonic currents being substantially larger than those for fermions near
half filling when Ω ∼ 1 (as was previously observed in Fig. 12.7a).

12.3.3 Kicked evolution, with initial mean momentum (〈k̂〉t=0 6= 0)

In this section we consider an initial state with a non-zero initial momentum, which is ob-
tained, e.g., by briefly tilting the lattice on a timescale much shorter than that corresponding
to dynamics of atoms in the lattice. If the tilt is linear, the resulting state will be given by

|φ(t = 0)〉 =
∑

j

exp(ipkjb̂
†
j b̂j)|φ0〉, (12.9)

where |φ0〉 is the initial many-body ground state, and the quantity pk is determined by the
magnitude and duration of the tilt. The effect of this tilt is to translate the ground state in
the periodic quasimomentum space by a momentum pk. The final mean momentum 〈k〉 then
depends both on the value pk and the properties of the initial momentum distribution.

Dependence of the current on kick strength pk

In the case of fermions, the dependence of the current on q for different filling factors n =
N/M and Ω can be clearly understood in terms of the SAT transmission profile (see [11]).
In Fig. 12.11a we see the current Iss as a function of pk with Ω = 0. The currents are
each peaked at pk = π/2, where the resulting mean velocity of the probe atoms is the
largest. For N/M = 1, the whole Bloch band is filled, and the momentum distribution is
not changed by the application of the kick, i.e., 〈k̂〉t=0 = 0. In Fig. 12.11b the same results
are shown, but with Ω/J = 1. Here we see that for small filling factors, a minimum appears
at pk = π/2, corresponding to the minimum in the transmission profile of the SAT for this
incident momentum [1, 11]. At higher filling factors, this feature of the transmission profile
for Ω/J = 1 is not sufficiently broad to overcome the increase current due to higer mean
velocities in the initial cloud, and the peak at pk = π/2 reappears. The currents here are, of
course, reduced in comparison with those for Ω = 0.

Whilst for all pk the currents with no coupling to the impurity atom, i.e., Ω = 0, are
the same for the Tonks gas as for fermions (Fig. 12.11a), the currents for finite interaction
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Figure 12.11. Steady state currents ISS through the SAT for fermions as
a function of the kick parameter pk, for (a) Ω = 0 and (b) Ω/J = 1. In
each plot the lines from bottom to top sequentially correspond to filling of N =
3, 6, 9, 12, 15, 20, 25, 30 particles initially on M = 30 lattice sites. Note that the
scales are different for (a) and (b), and also that the results in (a) are exactly
the same as those for a Tonks gas of bosons. In both cases, ∆ = Uqb = Ubm = 0.

strengths are found to be remarkably different. In Fig. 12.12 these rates are plotted for
U/J = 4, 7, 10 for N = 5, 15, 30 particles initially situated on M = 30 sites. For the very
dilute system with N = 5 (Fig. 12.12a) we see a peak similar to that observed for fermions
which is independent of the interaction strength. Here the currents are essentially those for
non-interacting particles, and the currents determined by the initial momentum distribution.
For N = 15 (Fig. 12.12b) we observe the surprising result that the current is peaked at a
lower value than is observed for fermions or for the Tonks gas. We have observed this peak
consistently for such cases of finite interaction, and note that as U/J increases, the peak
moves back towards pk = π/2 as the currents converge to the Tonks gas results. As N is
further increased, the peak continues to move left, and for N = 30 (Fig. 12.12c) we see a
monotonically decreasing current as pk increases. As U/J increases these values tend towards
the pk independent result observed for the Tonks gas. These results are surprising, but the
trends in the behaviour are clear, and they should be directly verifiable in experiments, even
without the presence of the impurity atom.

For non-zero coupling to the impurity atom, the currents as a function of pk are shown
in Fig. 12.13. Again we notice that the current for bosons with finite interaction strength
is peaked at much lower values of pk than the fermionic currents and that peaks of all of
the bosonic currents, including the Tonks currents, as significantly larger than the fermionic
currents at half filling, as was observed for diffusive results (pk = 0). The most remark-
able feature of these plots is that despite a significant reduction in the current, the basic
dependence on pk is very similar to the Ω = 0 results.
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Figure 12.12. Steady state currents with coupling to the SAT, Ω = 0, ISS as
a function of the kick parameter pk for varying interaction strengths, U/J = 4
(dotted), U/J = 7 (solid), and U/J = 10 (dashed), for (a) N = 5, (b) N = 15
and (c) N = 30 particles initially situated on M = 30 lattice sites. In all cases,
∆ = Uqb = Ubm = 0.

Figure 12.13. Steady state currents through the SAT ISS as a function of the
kick parameter pk, for Ω/J = 1. These plots show the comparison of a Bose gas
with different interaction strengths U/J = 4 (dotted line), U/J = 10 (dashed)
and U/J → ∞ (solid), and a Fermi gas (dash-dot), with (a) n = 1/2 and (b)
n = 1. In both cases, ∆ = Uqb = Ubm = 0.
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Figure 12.14. A comparison of steady state currents through the SAT, ISS, as
a function of Ω/J for pk = 0 (solid line), π/4 (dashed), and π/2 (dotted). Here
we consider a Tonks gas (U/J → ∞) of bosonic probe atoms which is initially
at half half-filling, N = 15, M = 30. ∆ = Uqb = Ubm = 0.

Dependence of the current on impurity-probe coupling, Ω

The steady state current Iss is shown in Fig. 12.14 as a function of Ω. We observe the same
strong decrease in the current due to the operation of the SAT for all of these curves, with
the highest currents corresponding to the pk = π/2 curve as expected. Note that the value of
ISS is affected equally for all of the kick strengths, and the ratio in the currents for different
values of pk is very similar for Ω = 0 and Ω/J = 2.

12.4 Summary

In summary, the SAT setup provides new experimental opportunities to study coherent trans-
port of many atoms past a spin-1/2 impurity due to the relatively long coherence times that
exist for systems of atoms in optical lattices. The resulting coherent many-body effects can be
clearly seen in the difference between the atomic currents observed for fermions and bosons,
and the non-trivial dependence of the current on interaction strength for bosons with finite
interactions. Even stronger dependence on these interactions is observed when the probe
atoms are initially accelerated to a non-zero momentum. The initial steady state currents
would be directly accessible quantities in the experimental implementation of the SAT, and
using recently developed methods for time-dependent calculation of many-body 1D systems,
we have made quantitative predictions for the corresponding currents for a wide range of
system parameters. We cannot be certain about the values the currents approach at long
times, although it is possible that the system will settle eventually into a regime with a dif-
ferent steady state current. The high values of χ needed to reproduce this behaviour in our
numerical calculations suggest that the currents in this regime could also be strongly sensitive
to the coherence properties of the system, which would be very interesting to investigate in
an experiment.
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[27] A. J. Daley, C. Kollath, U. Schollwöck, G. Vidal, J. Stat. Mech.: Theor. Exp. P04005
(2004); S.R. White and A.E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004).

[28] S.R. Clark and D. Jaksch, Phys. Rev. A 70, 043612 (2004); S.R. Clark, C. Moura
Alves, and D. Jaksch, New J. Phys. 7, 124 (2005); C. Kollath, U. Schollwöck, and W.
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Chapter 13

Future Directions

The manipulation techniques for atoms in optical lattices discussed in part II of this thesis
have significant potential applications to the experimental implementation of many strongly
correlated systems and quantum computing schemes. The primary future direction for this
work is, therefore, to see these ideas implemented in experiments. Similarly, it would be
extremely interesting to see an experimental implementation of the Single Atom Transistor
and the related measurements of steady state currents, as discussed in chapter 12. In addition,
there are a series of clear theoretical extensions to this work, a few examples of which are
outlined in this chapter.

As was already shown in chapter 6, for example, the dissipative process of creating ex-
citations in an external reservoir gas, presented in chapter 5 has much broader applications
than originally stated. This could be natural means to add controlled dissipation to systems
of atoms in optical lattices, as, in contrast to other sources of decoherence such as sponta-
neous emission of photons, the energy scale of the phonons (or general excitations) generated
is comparable to other energy scales in the system dynamics. In addition, the properties
of emitted phonons and the emission rate can be controlled via the characteristics of the
external reservoir gas. One potential application of such dissipation would be more general
laser-assisted cooling schemes which could be used to cool the motional distribution of atoms
within a particular Bloch band [1]. The spontaneous emission of phonons could also provide
a controlled means to study the interplay between dissipation and coherent dynamics for
atoms in optical lattices, especially the effects that dissipation may have on quantum phase
transitions in these systems.

The emission of phonons also does not have to be dissipative: If the size of the external gas
is comparable to the size of the lattice system and the lifetime of the excitation is engineered
to be long, then the phonons could be used as an extra coherent degree of freedom. One could
even imagine a system analogous to Cavity QED, but where phonons play the role of photons
and the motional states of an atom confined in a lattice site play the role of electronic states
in a real atom. The edge of the trap would be the equivalent of almost perfectly reflecting
mirrors, and phonons could be introduced into the system by using a Raman process to
excite the superfluid. Such a system could be used to study phonon-mediated entanglement
between atoms.
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The simulation methods discussed in part III of this thesis also have a large range of
potential applications. With many extensions having been recently developed [e.g., the ap-
plication of these methods to simulate master equations for dissipative systems and to study
systems in two dimensions (see chapter 7)], the possibilities to perform computations on
important systems is constantly growing.

The superposition of macroscopic states entangled with a spin-1/2 system that is seen in
the Single Atom Transistor problem could also find additional applications. For example, it
may be possible to produce a form of many-body wavefunction spectroscopy in which the
inner product between two states is directly measured. Given the state

|Ψ(t)〉 = |↑〉 ⊗ |ψ1(t)〉 + |↓〉 ⊗ |ψ2(t)〉, (13.1)

where |↑〉 and |↓〉 represent the state of the spin-1/2 atom in the z basis and |ψ1(t)〉 and
|ψ2(t)〉 are the many-body wavefunctions, the complex inner product 〈ψ1(t)|ψ2(t)〉 may be
determined by making measurements on the spin-1/2 atom in the x and the y basis. If the
evolution of the states |ψ1(t)〉 and |ψ2(t)〉 can be controlled independently, this can be used
to analyse the system time-dependently. For example, we could control the system evolution
so that one of the states, |ψ1(t)〉 crosses a quantum phase transition point in one direction
and then the other (e.g., Mott Insulator → superfluid → Mott Insulator), whereas for the
other many body state, |ψ2(t)〉 remains in the same phase. The resulting overlaps measured
would be of the form computed in chapter 8. This technique provides a comparison in the
many-body sense of two interesting mesoscopic states, and provides the ultimate test for the
return of the system to the original many-body state after crossing such a transition [2].
This would essentially constitute a step towards complete state tomography for many body
wavefunctions.
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