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Chapter 1

Introduction

The potential advantages of quantum computers over their classical coun-
terparts in solving certain problems originate in the large dimension of the
Hilbert space, which grows exponentially with the size of a many-body quan-
tum system. Consider, for example, a quantum computer with a register of
N qubits, e.g. a chain of N spin-1/2 particles. The state of this system is
described by a state vector |Ψ〉 residing in a 2N dimensional complex Hilbert
space H,

|Ψ〉 =
2N∑

j

cj|j〉, (1.1)

where {|j〉} denotes an orthonormal basis set of H and cj ∈ C. Changing

the state of the register, i.e. applying a unitary transformation Û on |Ψ〉, in
general simultaneously changes the values of 2N complex numbers.

In contrast, a classical computer with a register consisting of M classical
bits is only able to represent an integer ranging from 0 to 2M or an arbitrary
floating point number up to a limited precision. For example, a double
precision number, which is represented by the 64 bits IEEE 754 standard, is
able to express values with approximately 15 decimal places. A change in
the state of the bits alters the value of the scalar associated to them. Thus,
for a classical computer the simultaneous variation of 2N double precision
complex numbers required to perform operations on 2(N+7) bits. For a modest
number of N = 300 qubits in the quantum mechanical case, this translates
to 2307 ≈ 1092 classical bits, which already by far exceeds the estimated
number of particles present in the entire observable universe! This implies
the impossibility to exactly simulate large quantum mechanical systems, like
a 300 spin-1/2 chain on any foreseeable classical hardware.

1



2 1. Introduction

However, it turns out that for low energy regimes a quantum mechani-
cal system can often be very well described by considering only basis states
within a small fraction of the full Hilbert space H. In recent years, very
successful classical algorithms have been developed, which take advantage of
this fact and diagonalise the Hamiltonian only on a sufficiently large sub-
space that is computationally tractable though. Thereby, efficient ground
state calculations and real time simulations of many-body quantum systems
at low energies have become possible. Note that conversely this implies that
the advantage of a quantum computer is more subtle, as classically sim-
ulatable state evolutions cannot contribute to a quantum computer being
superior to a classical one. Indeed, powerful quantum algorithms, for ex-
ample Shor’s famous factoring algorithm [1], are based on the use of highly
entangled input registers, i.e. states in which information is stored in non-
local correlations. The efficient classical numerical techniques break down
upon simulating highly entangled states, since they can only be described by
basis sets occupying a large fraction of the Hilbert space H.

Numerical methods for simulating quantum mechanical many-body sys-
tems have become especially interesting, since in the last few years large
experimental progress has been achieved in engineering strongly correlated
many-body systems. Especially cold atoms in optical lattice potentials have
become an ideal context in which to study such strongly interacting systems,
giving rise to interesting observations. Analytical descriptions of many-body
quantum systems exist in several limits, e.g. mean-field theory in higher
dimensions, but turn out to be very challenging in general. This especially
affects the solution to questions related to dynamical properties. Numerical
simulations could therefore lead to a lot of insight and aid both experimental
and theoretical research in this domain.

Optical Lattices

One promising implementation for quantum information processing is a sys-
tem of cold atoms loaded into an optical lattice potential, which is created by
standing waves of laser light. This system offers both a realisation of lattice
Hamiltonians on a microscopic level, and a realisation where time-dependent
control is available over individual system parameters. The use of these sys-
tems to realise the Bose-Hubbard model was first proposed by D. Jaksch et
al. [2] with theoretically predicting a realisation of the Bose-Hubbard model
in an optical lattice. This model, already studied in 1989 by M. P. A. Fisher
et al. [3], gives rise to interesting physical behaviour including the existence
of different ground state quantum phases. The first experimental lattice re-
alisation, in which these phases were observed, was successfully achieved in
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a seminal experiment by M. Greiner et al. [4]. Since then, a large variety
of experimental setups have been tailored to toy-model lattice Hamiltonians,
partially well known from condensed matter theory, but with experimental
control over nearly every system parameter.

The possibilities for the manipulation of cold atoms in optical lattice po-
tentials are extremely versatile (Reviews can be found in [5–7]). For example,
the control over the lattice depths via the laser intensity in each dimension
gives rise to the opportunity to create effectively one- or two-dimensional
(1D/2D) configurations and furthermore makes it possible to tune tunnelling
rates and on-site interactions. A deeper lattice, for example, results in a de-
creased tunnelling probability to neighbouring sites and on the other hand
also leads to stronger on-site interactions due to a tighter confinement at
each site. Interaction strengths can even further be independently modelled
by making use of magnetical or optical Feshbach resonances. Also different
lattice geometries can be realised by altering angles between the confining
laser beams and energy offsets can be created by external fields or even be
addressed to particular sites by superimposing additional optical standing
waves. More than one species of particles loaded into the same optical lat-
tices opens another vast number of opportunities.

Recently, also systems with molecules or Rydberg atoms, atoms excited
into states of high principal quantum number n, have received a lot of at-
tention. These systems are particularly interesting since they are invoking
dipolar or van der Waals long-range interactions. Rydberg atoms have be-
come especially famous in this context since proposals arose to employ them
for fast quantum logic gates [8, 9].

Despite the fact that quantum computer implementations might be a vi-
sion of the far future, at an earlier stage optical lattices could already succeed
as an realisation of a universal quantum simulator [10]. Those were already
proposed by R. P. Feynman in 1982. The fundamental idea is to utilise a
controllable and observable quantum system, for example cold atoms in an
optical lattice, to mimic the dynamical evolution of a different system un-
der any desired Hamiltonian. Thereby, important questions from condensed
matter physics, nowadays still unresolved due to their mathematical complex-
ity, for example high TC superconductivity, could be answered by quantum
simulators.

Numerical Techniques – DMRG & TEBD

Algorithms to simulate unitary dynamics of lattice models can be useful in
several domains: (i) They can be used to quickly test analytical theories for
many-body quantum system, without requiring years for setting up experi-
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mental apparatuses; (ii) They can be utilised to directly test the validity of
model Hamiltonian implementations in experiments by direct comparison of
experimental to numerical results; (iii) Because of (ii), they can be an impor-
tant link towards quantum simulation or quantum computation realisations;
(iv) They can lead to further insight into quantum information theory and
be utilised to study emergence of entanglement.

As mentioned above, exact straight forward integration of the Schrödinger
equation is prohibitive for large many-body quantum systems because of the
huge dimension of the Hilbert space H. Additionally, algorithms based on
product state dynamics like the mean-field Gutzwiller ansatz, suitable for
higher dimensional systems, turn out to break down for 1D systems. How-
ever, a key step towards a simulation algorithm, initially restricted to ground
state calculations of large 1D quantum system, was achieved with the intro-
duction of the density matrix renormalisation group algorithm (DMRG) in
1992 by S. R. White [11]. The origin of the early success of this method
has been nowadays understood in terms of quantum correlation. DMRG is
based on a truncated state representation, retaining only slightly-entangled
basis states. These representations are denoted as truncated matrix prod-
ucts states (MPS) and turn out to be an excellent approximation in the case
of most low-energy regimes of 1D lattice models. From this understand-
ing, fruitful new algorithms capable of both time simulation and ground
state calculation were invented. An example is the the time evolving block
decimation algorithm (TEBD) [12], which is utilising a truncated Hilbert
space that is adapted from the entire space H along with the time-evolution.
Not only finite 1D systems, but also generalisations to infinite 1D systems
(iTEBD) [13], higher dimensions [14, 15] and open quantum systems [16,17]
have been achieved in recent years. However, despite some ideas as to how
long range interactions (e.g., in [18,19]) can be implemented, these methods
have been primarily applied to short-range interactions.

Purposes of this Thesis

1. We study the dynamic transport properties of an infinite 1D Bose-
Hubbard model. Analytical predictions [20] and experimental obser-
vations [21] have been recently performed, addressing the stability of
superfluid currents in this system. We are going to complement this
work by numerical results, utilising the iTEBD algorithm to provide
quantitative calculations of the behaviour of the system in 1D.

2. We extend the existing TEBD algorithm for the implementation of
long-range interactions in finite and infinite systems, and thereby open
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this technique to a wider range of physical applications.

3. We apply our newly developed method to a system of Rydberg atoms,
excited in an optical lattice potential. There we will consider long-range
dipolar interactions.

Overview

This thesis is organised in four main chapters. Chapters 2 and 4 will elabo-
rate on the algorithmic simulation techniques, 3 and 5 on the application to
physical systems.

In chapter 2 we outline the history of DMRG and introduce the TEBD
algorithm as originally presented by G. Vidal [12]. In the first part (Section
2.1) we will explain the matrix product state representation (MPS) and show
how it can be used to perform time simulations or ground state calculations
for 1D lattice Hamiltonians. In the second part (Section 2.2) we will adopt a
representation for infinite 1D systems (iMPS) and show how it can be utilised
for the simulation of these systems (iTEBD).

Chapter 3 deals with the simulation of bosonic transport properties in an
infinite 1D optical lattice. We are going to analyse the stability of superfluid
boson currents in the Bose-Hubbard model. In the first part of this chapter
(Section 3.1) we shortly introduce the general theoretical background of the
Bose-Hubbard model in optical lattices, boson currents, and current insta-
bilities. In the second part (Section 3.2 & 3.3) we present and demonstrate
a method to utilise the iTEBD algorithm for this system.

An algorithm for the solution of the Schrödinger equation in large 1D
lattice systems including long-range interactions is presented in chapter 4.
We present a scheme to complement the existing TEBD and iTEBD frame-
works. Initially we introduce an implementation for finite systems, which we
denote lTEBD algorithm (Section 4.1). Afterwards (Section 4.2), we extend
this scheme for infinite state representations (ilTEBD).

The lTEBD algorithm will be applied in chapter 5, where we analyse a
system of Rydberg excitations in a 1D lattice, considering dipolar long-range
interactions. Firstly, we will give a short theoretical outline (Section 5.1).
In the second part (Section 5.2) we will study both, ground states and real
time dynamics under the model Hamiltonian. We will further elaborate on
a scheme to experimentally prepare an interesting “anti-ferromagnetic like”
state.

Finally, chapter 6 concludes with a summary and an outlook for projects
discussed in this thesis.
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Chapter 2

Simulation of 1D Quantum
Systems

Exact simulation of large quantum mechanical systems is impossible on clas-
sical computers, due to the exponential growth of the Hilbert space with
the system size. A large quantum state cannot even be stored on a clas-
sical computer. For example, looking at a 1D chain of N spins (qubits),
each with dimensionality 2, the state of a composite system is represented
by 2N complex numbers. Representing just 50 Spins would require to store
2×250 ≈ 2×1015 numbers, thus in double precision approximately 16×106 GB
of storage memory would be required! Furthermore, to compute an arbitrary
single evolution of this state, matrices containing approximately 1030 complex
numbers would have to be multiplied to the state vector, requiring O(1030)
basic floating point operations (FLOP). Today’s most powerful supercom-
puter1 can perform approximately 1000 TFLOP/s and would therefore be
occupied more than 30 million years for a single evolution step. Thus, with
today’s or tomorrow’s technology, exact simulation of large quantum me-
chanical systems is completely intractable.

This apparently insurmountable limitation particularly also concerns sys-
tems of particles loaded into an optical lattice potential, which will be stud-
ied in chapters 3 and 5. For example, in the 1D Bose-Hubbard model the
dimension of the Hilbert space is equivalent to the number of all possible
combinations of placing M bosons (with multiple occupations allowed) onto
N sites and therefore given by

dimH =

(
N + M − 1

M

)
≡ (N + M − 1)!

M ! (N − 1)!
. (2.1)

1www.top500.org, June 2008

9



10 2. Simulation of 1D Quantum Systems

Thus, solutions of small systems with more than a few particles and lattice
sites already by far exceed the capabilities of modern computers. For exam-
ple, a state vector of the system containing 20 particles on 40 lattice sites
has a dimension of approximately 1015!

Despite this perspective enormous progress has been achieved in the last
16 years in developing methods for near-exact numerical treatment of large
quantum systems. Especially the invention of density matrix renormalisation
group (DMRG) techniques has made it possible to simulate large quantum
systems up to an unanticipated precision. A general extensive review of
DMRG methods is found in [1].

The DMRG algorithm was first introduced by S. R. White in 1992 [2] and
was able to calculate T = 0 ground states of large 1D quantum systems (e.g.
the Heisenberg-chain over 60 sites [3]) up to an high precision with ordinary
computational resources. The key idea of the algorithm is the decimation
of the huge Hilbert space down to a computationally tractable smaller size
without significantly changing physical properties. In the DMRG algorithm,
this truncation is performed by retaining only basis states related to a small
weight in the expansion of a reduced density matrix for some part of the
system in terms of its eigenstates. As was pointed out later by for example
S. Östlund and S. Rommer [4,5] DMRG generates ground states that can be
written in a matrix product state (MPS) form. In this context, the success of
DMRG could be identified due to the approximation of keeping only “slightly
entangled” states corresponding to all bipartite splittings in the 1D chain (see
for example [6]).

Starting in 2002, DMRG has also been successfully extended for time-
evolution simulations of 1D systems. First attempts were made using direct
forward integration of the Schrödinger equation on a static decimated Hilbert
space by M. A. Cazalilla [7]. Following that, enormous progress has been
achieved by employing adaptively decimated spaces changing during time
evolution. This method, referred to as the time evolving block decimation
(TEBD) algorithm was introduced by G. Vidal in 2003 [8, 9], formulated
in terms of MPS. The same algorithm has been adapted for infinite sized
systems [10]. In 2004 it was translated to the DMRG language by A. J. Daley
et al. [11] and White and Feiguin [12]. This turned out to be very fruitful and
made possible the transportation of very well known numerical improvements
like the implementation of conservation laws from DMRG algorithms to the
TEBD framework.

Furthermore, in recent years the TEBD algorithm has also been gener-
alised to work with open systems by F. Verstraete and M. Zwolak [13, 14]
making possible the simulation of finite temperature and master equations.
Also, similar success has been achieved using projected entangled pair states
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(PEPS), which generalise MPS for use with periodic boundary conditions,
and in higher dimensions [15]. These methods have been reviewed in [16].

The TEBD algorithm has already been successfully applied to study dy-
namical properties of 1D systems in many ways. For instance, dynamics of
phase transitions in the Bose-Hubbard model [17], spin-charge separation in
Fermi-Hubbard [18] and two component Bose-Hubbard systems [19], evolu-
tion of magnetisation within Heisenberg spin-chains [20], currents in a single
atom transistor [21], or Andreev-like reflections for fermions and bosons [22]
could be analysed in detail.

In this chapter, we will introduce the TEBD (Section 2.1) and iTEBD
(Section 2.2) algorithms, which we will both extensively apply to atoms in
optical lattices in later chapters.

2.1 Time Evolving Block Decimation Algo-

rithm (TEBD)

The time evolving block decimation (TEBD) algorithm, developed by G.
Vidal [8] is equivalent to the adaptive time-dependent DMRG method with
only notational differences as pointed out in [11]. It is based on an approxi-
mate state representation appropriate for a 1D quantum system, neglecting
highly entangled basis states. This truncated representation makes an effi-
cient storage of low energy states containing only small amounts of bipartite
entanglement possible. By introducing a scheme to apply operators which
act on two subsequent sites within this framework, time evolution can be
efficiently simulated. This is achieved by decomposing the time-evolution op-
erator into sweeps of two-site gates via a Suzuki-Trotter expansion. TEBD is
also capable of calculating ground states by simulating evolution in imaginary
time.

2.1.1 The MPS State Representation

To store an entire state for a large quantum system, one has to find an
approximate state representation, which is valid in limits of certain physical
quantities. Treating large quantum systems, a natural choice for such a
quantity can be entanglement. The amount of entanglement in a system is
related to the number of coefficients required to describe it in a bipartite
Schmidt decomposition (Schmidt rank) [23], which is the key idea of the
TEBD state representation.
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Schmidt Decomposition

Consider a bipartite quantum state residing in the Hilbert space H, which is
composed of two subspaces A and B, H ≡ HA ⊗HB with dimensions dA, dB

and orthonormal bases {|i〉A},{|j〉B} respectively.

|ΨAB〉 =

dA∑

i

dB∑

j

ci,j|i〉A ⊗ |j〉B. (2.2)

The complex coefficient matrix ci,j can always be decomposed via a singular
value decomposition (see [23]) into

ci,j =

χAB∑

k

ui,ksk,kvk,j, (2.3)

where the ui,k are the elements of a dA ×dA unitary matrix, vk,j of a dB ×dB

unitary matrix, and sk,k′ of a diagonal dA×dB matrix. The diagonal elements
of sk,k′ are the non-negative singular values of ci,j and shall be denoted as
Schmidt coefficients λk ≡ sk,k They satisfy

χAB∑

k

s2
k,k =

χAB∑

k

λ2
k = 1. (2.4)

The Schmidt vectors |ΦA/B
k 〉 residing in spaces HA and HB respectively are

defined as

|ΦA
k 〉 ≡

dA∑

i

ui,k|i〉A

|ΦB
k 〉 ≡

dB∑

j

vk,j|j〉B (2.5)

and form an orthonormal basis in each subsystem A and B due to the unitar-
ity of ui,k and vk,j. Inserting (2.5) and (2.3) into (2.2) leads to the Schmidt
decomposition of |ΨA,B〉,

|ΨAB〉 =

χAB∑

k

λk|ΦA
k 〉 ⊗ |ΦB

k 〉, (2.6)

which is an expansion of |ΨAB〉 in the Schmidt bases with Schmidt coefficients
λk.
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In quantum information theory, the number of non-zero Schmidt coeffi-
cients required to exactly describe the system in a bipartite splitting is called
the Schmidt number or Schmidt rank. It is a measure for the amount of en-
tanglement between to subsystems A and B. As a simple example, the trivial
Schmidt decomposition of two qubits in the non-entangled product state

|0〉 ⊗ |0〉,

requires only one coefficient λk = 1δk,1. In contrast, the maximally entangled
Bell state

1√
2
(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉),

requires two, which equals the maximum possible value of χAB. Here λ1 =
1/
√

2, λ2 = 1/
√

2 and χAB = min (dA, dB) = 2.
Mathematically, this bipartite entanglement can be further quantified in

terms of the von Neumann entropy of the subsystems [23]. In general, this
entropy is defined as

S(ρ) = −trρ(log2 ρ), (2.7)

where “tr” denotes the trace, and ρ ≡ |ΨAB〉〈ΨAB| is the density operator of
the system. Inserting the Schmidt decomposition of |ΨAB〉, (2.6) into (2.7)
leads to

S = −
χAB∑

k

λ2
k log2(λ

2
k). (2.8)

The von Neumann entropy is a number 0 ≤ S ≤ log2 (χAB). Equality holds
only for the completely unentangled product state with S = 0, which is
the case in the |0〉 ⊗ |0〉 example and for the maximally entangled state
with S = log2 (χAB), which is the case in the Bell-state example, where
S = log2 (χAB) = 1.

Decomposition of a N-Site System

Effectively, what has been achieved by the singular value decomposition (2.3)
is the fact that the complex coefficient matrix ci,j of the state vector of the
compound system has been expanded into local matrices ui,k and vk,j. They
are local in the sense that ui,k contains the index i, belonging to system A
and vk,j contains the index j, belonging to part B respectively. This was
attained at cost of introducing a third index k, over which a sum has to be
performed.
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ci,j

i j

ci1,i2,...,iN

i1 i2 iN

Figure 2.1: The singular value decomposition makes it possible to express
complex coefficients of a bipartite quantum state into two local parts (left
side). We will show how to achieve this for an arbitrary 1D state composed
of N local sites (right side).

We are now going to proceed in the same manner and expand the co-
efficient matrix of an arbitrary 1D quantum system consisting of N sites,
ci1,i2,...,iN , into matrices located at individual sites as sketched in Fig. 2.1.

Consider a 1D quantum system composed of N sites, each with a local
Hilbert space of dimension d. The entire Hilbert space can then be written
as H ≡ HA1 ⊗ HA2 · · · ⊗ HAN

. A state spanned in the bipartite system
HA1 ⊗HR1 with HR1 ≡ HA2 ⊗HA3 · · ·⊗HAN

and dimensions dim(HA1) = d,
dim(HR1) = d(N−1) can be written as (tensor product symbols omitted)

|Ψ〉 =
d∑

i1

d(N−1)∑

iR

ci1,iR |i1〉|iR〉 =

χ1∑

α1

λ[1]
α1
|ΦA1

α1
〉|ΦR1

α1
〉. (2.9)

Here, the Schmidt vectors |ΦA1/R1
α1 〉 form an orthonormal basis in each sub-

system A1 and R1. The maximum possible Schmidt rank for a general state
is χ1 = d. By introducing a matrix Γ

[1]i1
α1 to re-express the state in its original

basis in subsystem A1, one can write

|Ψ〉 ≡
χ1∑

α1

d∑

i1

Γ[1]i1
α1

λ[1]
α1
|i1〉|ΦR1

α1
〉. (2.10)

Consider now the Schmidt decomposition of |Ψ〉 within the two-party Hilbert
space (HA1 ⊗ HA2) ⊗ HR2 , split into subsystems HA1 ⊗ HA2 and HR2 ≡
HA3 ⊗HA4 · · · ⊗ HAN

,

|Ψ〉 ≡
χ2∑

α2

λ[2]
α2
|ΦA1A2

α2
〉|ΦR2

α2
〉. (2.11)
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The dimensions are dim(HA1 ⊗ HA2) = d2, dim (HR2) = d(N−2) and there-
fore χ2 = d2. Noting that {|ΦR2

α2
〉} forms an orthonormal basis in HR2 , the

Schmidt states |ΦR1
α1
〉 ∈ HR1 = HA2 ⊗HR2 can be expressed as

|ΦR1
α1
〉 ≡

d∑

i2

χ2∑

α2

Γ[2]i2
α1α2

λ[2]
α2
|i2〉|ΦR2

α2
〉, (2.12)

where a new three dimensional array Γ
[2]i2
α1α2 has been introduced. Substituting

(2.12) into (2.10), the state of the whole system can be written as

|Ψ〉 =
d∑

i1,i2

χ1,χ2∑

α1,α2

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2
|i1〉|i2〉|ΦR2

α2
〉. (2.13)

Iterating the steps (2.11) and (2.12) on the remaining (N − 3) possible split-
tings of the full space H (i.e. between sites 3 ↔ 4, 4 ↔ 5, . . . , (N − 1) ↔ N),
the complex coefficients of an arbitrary quantum system composed of N local
Hilbert spaces of dimension d

|Ψ〉 =
d∑

i1,i2,...,iN

ci1,i2,...,iN |i1〉|i2〉 . . . |iN〉 (2.14)

can be re-expressed as

ci1,i2,...,iN ≡
χ1∑

α1

χ2∑

α2

· · ·
χN−1∑

αN−1

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2

. . . λ[N−1]
αN−1

Γ[N ]iN
αN−1

. (2.15)

Diagrammatic Notation

It turns out to be useful to introduce a diagrammatic notation for the de-
composition (2.15). This can be visualised as

i1 i2

. . .

iN

c ≡

i1

Γ[1]
λ

[1]
α1

i2

Γ[2]
λ

[2]
α2

. . .
λ

[N−1]
αN−1

iN

Γ[N ]

, (2.16)

which is a representation in which indices are depicted by straight lines and
objects with m indices are m-dimensional arrays. For example, in (2.16) the
state coefficients ci1,i2,...,iN are described by the large rectangle on the left

hand side and the three dimensional Γ
[l]il
αlαl (1 < l < N) objects are rendered
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by the smaller rectangles on the right hand site. The Schmidt coefficients
are formally defined as diagonal matrices (2 indices) via λ

(γ)
αi ≡ λαi

δγ
αi

. A
line connecting two objects indicates a summation over the corresponding
index. This visualisation of equations with many sums will turn out to
be very useful to find optimal ways to transform the states in the TEBD
state representation. For simplicity, in most cases the Γ- and λ-letters or
index identifiers will be dropped, except in the case that they significantly
contribute to the understanding of the diagram.

Truncated MPS

Representation (2.15) is denoted a “matrix product state” (MPS) and said
to be in its canonical form, if for all bond indices αj (0 ≤ j ∈ N < N), the

state can be expanded in an orthonormal Schmidt bases {|Φ[j]L
αj 〉} to the left

and {|Φ[j]R
αj 〉} to the right of the specific bond,

|Ψ〉 =

χj∑

αj

λ[j]
αj
|Φ[j]L

αj
〉|Φ[j]R

αj
〉, (2.17)

with

|Φ[j]R
αj

〉 =
d∑

ij+1,ij+2,...,iN

χj+1∑

αj+1

χj+2∑

αj+2

· · ·
χN−1∑

αN−1

Γ[j+1]ij+1
αjαj+1

λ[j+1]
αj+1

Γ[j+2]ij+2
αj+1αj+2

λ[j+2]
αj+2

. . .

. . . λ[N−1]
αN−1

Γ[N ]iN
αN−1

|ij+1ij+2 . . . iN〉, (2.18)

and

|Φ[j]L
αj

〉 =
d∑

i1,i2,...,ij

χ1∑

α1

χ2∑

α2

· · ·
χj−1∑

αj−1

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2

. . .

. . . λ[j−1]
αj−1

Γ[j]ij
αj−1αj

|i1i2 . . . ij〉. (2.19)

Expression (2.15) is still an exact formulation of the state |Ψ〉, and the
arrays Γ and λ also cannot be stored for large systems, since the maximal
possible Schmidt rank grows exponentially with the system size. However,
|Ψ〉 can now be approximated by writing all sums over bond indices αj in
descending order and truncating terms, with bond indices larger than a fixed
value of χ ≤ max (χj). This reduces the Hilbert space by removing the small
weighted basis states, leaving only a computationally tractable dimension.
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An error per bond by doing this truncation can be quantified directly from
the normalisation condition (2.4) as

ǫj =

χj∑

αj=(χ+1)

λ[j] 2
αj

. (2.20)

A priori, it is not clear for which systems this is a good approximation.
It is clear that because of the limited number of Schmidt basis states, the
approximation is only valid for states containing only little bipartite entan-
glement. For example, in a system of 50 qubits, the von Neumann entropy
of the maximally entangled state would be Smax = log2 (χ25) = 25. However,
choosing for example a truncation value of χ = 128, which is already quite
large in practice, allows only states with von Neumann entropy lower than
Sχ = 7.

In recent years, it has been analytically shown that for 1D spin chains,
entanglement contained in the ground state is in general small and that the
MPS provides a faithful representation of such states [6, 16]. It has been
proven that away from a quantum critical point in the limit of infinite sys-
tem length, for several spin-models the ground-state von Neumann entropy
saturates at some fixed value [24, 25]. Therefore, it can be expected that
for large enough values of χ, the truncated MPS representation gets very
close to the exact quantum state in such chains. Furthermore, the great
success of DMRG/TEBD methods in simulating many different 1D systems
(e.g. [17–22,26,27]) indicates that the analytical results from spin-chains hold
in a much more general context.

However, in practice, the results have to be checked by using increasingly
higher values of the truncation parameter χ and looking for convergence.
Furthermore, during time evolution one must ensure, that the truncation
errors per bond (2.20) remain small.

2.1.2 Expectation Values

Physically interesting quantities of a many-body state |Ψ〉 are typically ei-
ther local expectation values of the form 〈Ψ|Ôl|Ψ〉, for example the particle
number expectation value in the Bose-Hubbard model 〈Ψ|n̂l|Ψ〉 at a specific
site l, or correlation functions computed over several sites. The simplest ex-
amples of these are correlation functions of the form 〈Ψ|ÔlÔm|Ψ〉, like the

single particle density matrix 〈Ψ|b̂†l b̂m|Ψ〉 (see chapter 3).
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Local Expectation Values

In a canonical state representation (2.15), |Ψ〉 can be locally expressed at
site l as

|Ψ〉 =
∑

i

∑

α,β

λ[l−1]
α Γ

[l]i
αβλ

[l]
β |i〉l|Φ[l]L

α 〉|Φ[l]R
β 〉. (2.21)

Therefore, using this local Schmidt basis representation of |Ψ〉, one-site op-

erators Ôl ≡ O
[l]j
i |j〉l〈i|l at this site can be applied by simply updating Γ

[l]i
αβ

Γ̃
[l]j
αβ =

∑

i

O
[l]j
i Γ

[l]i
αβ. (2.22)

In the diagrammatic picture, the process from equation (2.22) can be ex-
pressed via

α
l

j

i

O

β

O(χ2d2)−−−−→

α

j

l
β

, (2.23)

where the dotted line on the left hand sites indicates the part of the “tensor
network” that will be contracted in the following step. In the graphical
visualisation, it is also very easy to derive the complexity of the process, by
counting the index-lines involved. In this example O(χ2d2) basic operations
are required, because we must sum over the connected indices, and all other
indices of the final object (represented by the solid lines passing through the
dotted line).

The local expectation value can now be calculated by evaluating the sum

〈Ψ|Ôl|Ψ〉 =
∑

j

∑

α,β

(λ[l−1]
α )2Γ̃

∗[l]j
αβ Γ̃

[l]j
αβ (λ

[l]
β )2, (2.24)

where the orthonormality of the Schmidt bases {|Φ[l]L
α 〉} and {|Φ[l]R

β 〉} has
been exploited. In this step O(χ2d) operations are required and it can be
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visualised via

α
l

β

α
j

l
∗ β

O(χ2d)−−−−→
〈Ψ|Ôl|Ψ〉

, (2.25)

where the ellipse on the right side has no index and therefore denotes a
zero-dimensional matrix, i.e. a scalar.

Off-Site Expectation Values

To evaluate expectation values over distinct sites l and m, a ≡ |l −m|, after
applying the operators Ôl and Ôm according to (2.22)/(2.23) on site l and m
respectively, the following sum has to be evaluated:

〈Ψ|ÔlÔm|Ψ〉
=
∑

i1,...,ia

∑

α1,...αa

(λ[l]
α1

)2Γ∗[l]i1
α1α2

Γ̃[l]i1
α1α2

(λ[l+1]
α2

)2Γ∗[l+1]i1+1
α2α3

Γ[l+1]i1+1
α2α3

(λ[l+2]
α3

)2 . . .

. . . (λ[m−1]
αa−1

)2Γ∗[m]ia
αa−1αa

Γ̃[m]ia
αa−1αa

(λ[m]
αa

)2, (2.26)

where again the orthonormality of the Schmidt bases has been exploited. An
efficient way to perform this operation is:

α1

l

α2 α3
. . .

αa−1

m
αa

α1

l
∗ α2 ∗ α3

. . .
αa−1

m
∗ αa

(2.27)

O(χ3d)−−−−→

α2 α3
. . .

αa−1

α2 ∗ α3
. . .

αa−1

(2.28)
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O(χ3d)−−−−→

α2 α3
. . .

αa−1

α3
. . .

αa−1

(2.29)

O(χ3d)−−−−→

α3
. . .

αa−1

α3
. . .

αa−1

. (2.30)

Iterating steps (2.29) and (2.30) (a − 4) times leads to:

O(aχ3d)−−−−→

αa−1

αa−1

O(χ2)−−−→
〈Ψ|ÔlÔm|Ψ〉

. (2.31)

Thus, in the MPS state representation the expectation values over distinct
sites l and m, 〈Ψ|ÔlÔm|Ψ〉, can be computed within a total of O(|l−m| χ3d)
basic operations.

2.1.3 The Algorithm

Next-Neighbour Gates

The most important step in the TEBD algorithm is the implementation
of gates, acting on two subsequent sites. We begin with the state vector
expanded in the basis of two neighbouring sites l and l + 1 as

|Ψ〉 =
∑

i,j

∑

α,β,γ

λ[l−1]
α Γ

[l]i
αβλ

[l]
β Γ

[l+1]j
βγ λ[l+1]

γ |i〉l|j〉l+1|Φ[l]L
α 〉|Φ[l+1]R

γ 〉. (2.32)

This allows for application of two site operators Ûl,l+1 ≡ Ua,b
i,j |a〉l|b〉l+1〈i|l〈j|l+1

by evaluating the sum

Θab
αγ ≡

∑

i,j

Uab
ij

∑

β

λ[l−1]
α Γ

[l]i
αβλ

[l]
β Γ

[l+1]j
βγ λ[l+1]

γ , (2.33)
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resulting in the state

|Ψ〉 =
∑

a,b

∑

α,γ

Θab
αγ|a〉l|b〉l+1|Φ[l]L

α 〉|Φ[l+1]R
γ 〉, (2.34)

and requires O(χ3d2 + χ2d4) operations:

α
l

β γ

a

i

U

b

j

O(χ3d2)−−−−→

α γ

a

i

U

b

j

O(χ2d4)−−−−→

α

a b

Θ
γ

. (2.35)

By introducing Θ, the MPS has lost the bond between sites l and l + 1.
Therefore, to reintroduce the canonical form, one has to perform a Schmidt
decomposition of the state (2.34), which is mathematically a singular value
decomposition (see section 2.1.1) of the matrix Θij

αγ according to the index
partition (αi) : (γj) and can be computed in O(χ3d3) basic operations. The

original form with updated Γ
[l]i
αβ, λ

[l]
β and Γ

[l+1]j
βγ can then be restored, simply

by multiplying the state by the inverse of λ
[l−1]
α and λ

[l+1]
γ from the left and

the right respectively,

Θij
αγ

SD
=

χi∑

β

Li
αβλ̃

[l]
β Rj

βγ =

χi∑

β

λ[l−1]
α Γ̃

[l]i
αβλ̃

[l]
β Γ̃

[l+1]j
βγ λ[l+1]

γ . (2.36)

Since χi = χd > χ, only the largest χ terms should be kept in order to
bring the state back in its original truncated MPS representation. At this
point, the error introduced can be evaluated using equation (2.20). After
building Θ and performing the truncation in the Schmidt decomposed form,
the full state is represented in a newly adapted Hilbert space, with the same
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dimensionality as before. Equation (2.36) can be visualised via

α

i j

Θ
γ

O(χ3d3)−−−−−−−−→
S.D. & Trunc.

α

i

l̃
λ̃

[l]
β

j

l̃+1
γ

O(χ2d)−−−−→

α

i

l̃

β

j

l̃+1

γ

. (2.37)

These two steps (2.35) and (2.37) form the heart of the TEBD algorithm.

Suzuki-Trotter Decomposition

The TEBD algorithm for simulating the time evolution of a 1D quantum state
consists of using steps (2.35) and (2.37) to apply small next-neighbour time
evolution operators. Thereby, efficient simulation of any slightly entangled
1D state becomes possible. The only condition is that the Hamiltonian ĤNN

contains only next-neighbour terms and can therefore be written as sum over
two-site Hamiltonians ĤNN ≡ ∑N−1

j Ĥj,j+1. Then, the full time evolution
operator

ÛNN(∆t) ≡ e−iĤNN∆t = e−i
PN−1

j Ĥj,j+1∆t, (2.38)

(~ ≡ 1) can be expressed via a Suzuki-Trotter Decomposition [28] as product
of individual next-neighbour evolution gates

Ûj,j+1 ≡ e−iĤj,j+1∆t′ , (2.39)

with possibly differing time steps ∆t′. Since, in general, the gates Ûj,j+1 do
not commute with each other, this expansion is an approximation with an
error depending on the size of the commutators between different terms and
on the time step. For instance, the simplest decomposition would be a first
order expansion of an operator e(Â+B̂)∆t with [Â, B̂] 6= 0,

e(A+B)∆t = eÂ∆teB̂∆t + O(∆t2), (2.40)

which simply follows from the standard Baker-Hausdorff identity. Thus, for
ÛNN(∆t), a possible first order expansion into next-neighbour gates would be
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to use (2.40) with eÂ ≡ ∏j e−iĤ2j,2j+1 and eB̂ ≡ ∏j e−iĤ2j+1,2j+2 . If the gates

e−iĤj,j+1∆t for even j are consecutively applied via (2.35) and (2.37), followed
by all odd-j-gates, the time evolution over a small time step ∆t of the full
MPS is simulated up to an error of O(∆t2).

However, for better performance in general higher-order expressions are
desired. For example, a second order decomposition can be simply achieved
via

e(A+B)∆t = eÂ∆t/2eB̂∆teÂ∆t/2 + O(∆t3). (2.41)

Therefore, for a second order expansion, consecutively the gates e−iĤj,j+1∆t′

with even j have to applied with half a time-step ∆t′ = ∆t/2, followed by

all full time-step gates e−iĤj,j+1∆t for odd j-values.
Even higher order expressions have been systematically analysed in [29].

For our TEBD algorithm, we define a sweep P̂∆t′ as the consecutive imple-
mentation of the gates (2.39) as

P̂ T
∆t′ ≡ Û1,2Û2,3Û3,4 . . . ÛN−1,N . (2.42)

As presented in [29], an n-th order method can be implemented, by applying
P̂∆t′ and its transposed version in an adequate order. Specifically, we use a
4th order decomposition, for which ∆t′ = ∆t/12 and which reads

ÛNN(∆t) = P̂ T
1 P̂1P̂

T
1 P̂−2P̂

T
1 P̂ T

1 P̂ T
1 P̂ T

1 P̂1P̂
T
1 P̂1P̂1P̂1P̂1P̂

T
−2P̂1P̂

T
1 P̂1

+ O(∆t5). (2.43)

Thus, the simulation of a full ∆t time step up to an error of O(∆t5) requires a
total of [18(N − 1)] applications of next-neighbour gates, according to (2.35)
and (2.37). Hence, O(Nχ3d3) basic operations for such a single time step are
required, using the TEBD algorithm in our case.

Imaginary Time Evolution

TEBD is not only limited to real time evolution, it also supports the calcu-
lation of ground states for any one-dimensional next-neighbour Hamiltonian.
This can be achieved by simply simulating evolution in negative imaginary
time. It is easy to verify that the ground state of a system can be written as

|ΨG〉 = lim
τ→∞

e−Ĥτ |Ψ0〉
‖e−Ĥτ |Ψ0〉‖

, (2.44)

with some initial state |Ψ0〉, as long as the overlap of this state with the
ground state is non-zero, 〈Ψ0|ΨG〉 6= 0, and there exists an energy gap
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between the ground an the first excited state ∆ ≡ E1 − E0 > 0. Then,
|Ψ0〉 can be expanded in its energy eigenbasis {|En〉} with eigenenergies
E0 < E1 < . . . ,

|Ψ0〉 =
∑

n=0

cn|En〉 (2.45)

and therefore

|ΨG〉 ∝ lim
τ→∞

∑

n

e−Enτcn|En〉

∝ lim
τ→∞

(
co|E0〉 +

∑

n

e−(En−E0)τcn

)
= c0|E0〉, (2.46)

since (En − E0) > 0. Thus, by evolving a MPS in imaginary time steps
∆τ = −i∆t and keeping it normalised, it converges to the ground state of the
system. The normalisation step is ideally performed after each application
of a two-site operation, when building the matrix Θ in (2.35).

Note that especially for infinite systems discussed below in section 2.2, the
conditions 〈Ψ0|ΨG〉 6= 0 and ∆ > 0 are not necessarily fulfilled and special
care should be taken. A quality check for a calculated ground state |Ψc〉 can
for example be performed by simulating the real time evolution of this state
under the same time-independent Hamiltonian. The aim is then to verify,
that physical quantities like long-range expectation values do not change on
long timescales, thus ensuring the fact that |Ψc〉 is at least an eigenstate.
Additionally, as for the real time evolution, convergence in the truncation
parameter χ and the time-step ∆t has to be tested.

This procedure for calculating ground states turns out to be very robust
against numerical noise. This can be understood because of the fact that a
corrupted intermediate state calculated during imaginary time evolution can
in principle again be considered as a new initial state |Ψ0〉. Furthermore,
numerical noise even helps to fulfil the condition 〈Ψ0|ΨG〉 6= 0. Note that
because of the equivalence of the MPS representation to the DMRG state
representation [11], in principle also the standard variational DMRG tech-
niques can be used to obtain a MPS ground state, which can then be further
used for real time simulations within TEBD. The advantage of the standard
DMRG technique is that it converges faster than an imaginary time-evolution
within TEBD.

Orthogonality Problems

Another important issue when applying a general two-site gate V̂j,j+1 to a
MPS is that it might lead to non-orthogonality and therefore destroy the
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canonical form of the MPS. This can arise either in the case of non-unitary
operators like in imaginary time evolution, or even for unitary operators due
to the truncation step. Consider, for example the following situation of an
initially canonical MPS

. . .
⊥ ⊥

1
⊥ ⊥

2
⊥ ⊥

3
⊥ ⊥

4
⊥ ⊥

. . .

. (2.47)

The ⊥ symbols are denoting orthogonality of the Schmidt bases to the left
(left symbol) and to the right (right symbol) if the state would be expanded
at a specific bond according to (2.17). Consider now the situation after the
two processes in the application of a next-neighbour non-unitary gate V̂

. . .
⊥ ⊥

1
⊥ ?

Θ
? ⊥

4
⊥ ⊥

. . .

(2.48)

and

. . .
⊥ ⊥

1
⊥ ?

2
⊥ ⊥

3
? ⊥

4
⊥ ⊥

. . .

. (2.49)

In expression (2.48), the Θ matrix has been built within an expansion in the
Schmidt basis {|ΦL

12〉} , where “12” stands for the bond index between 1 and
2, and {|ΦR

34〉}. Thus, by applying V̂ , these basis states, and all others to
the left and the right respectively are not modified and remain orthonormal.
However, the former bases {|ΦR

12〉} and {|ΦL
34〉} have been absorbed into Θ

with an unknown result in terms of orthonormality. Unfortunately, by the
singular value decomposition leading to (2.49), only for {|ΦL

23〉} and {|ΦR
23〉}

is orthonormality explicitly reintroduced. If V̂ were unitary, the orthonormal
states {|ΦR

12〉} and {|ΦL
34〉}, transformed into Θ would have been remained or-

thonormal throughout the whole process. But in the general non-unitary case
(2.49) has lost its canonical form. Note that this problem arises not only due
to explicitly non-unitary operators applied during imaginary time evolution,
but also due to the truncation of the bases after a Schmidt decomposition,
also in real time evolution.
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There are three possible solutions to this problem. In the case of imagi-
nary time evolution, where the non-unitarity arises mainly from the operator
itself, one can reduce this problem by using a very small time-step. Then,
e−Ĥj,j+1∆τ gets very close to the unitary identity operator and the orthogo-
nality error becomes small, with orthonormality being reintroduced at each
bond in the system during the corresponding singular value decomposition.
However, this is not quite satisfying, since the purpose of implementing a
high order Suzuki-Trotter expansion was partly to avoid having to use an
extremely small time-step. The second possibility is to apply a general or-
thogonalisation scheme, working for any non-canonical MPS, which has been
introduced in [30]. However, in our case it is more efficient to use the fact that
the state (2.49) only suffers from 2 out of 2(N −1) non-orthogonal basis sets.
Consider, for example the sets {|ΦL

23〉} and {|ΦR
45〉}, which are both orthonor-

mal. The first set is orthonormal due to the preceding Schmidt decomposition
and the second one due to that fact that it has not yet been modified. Due
to their orthonormality, it is no problem to apply a non-unitary operator V̂
between sites 3 and 4, resulting in

. . .
⊥ ?

2
⊥ ?

3
⊥ ⊥

4
? ⊥

5
⊥ ⊥

. . .

. (2.50)

On the other hand, in (2.49) it would have also been possible to act with a
gate between sites 1 and 2, or once again on 2 and 3. Even better, also in
(2.50), a gate-application to the left (sites 2,3) or to the right (sites 4,5) of
the previously created bond index (34) or between 3 and 4 itself is possible.
This holds in general: Schmidt bases might lose their orthogonality, but some
relevant sets will always remain orthonormal, so that in any case an operation
to the left or to the right of the previous gate or at the same location is always
possible, assuming that the initial state was in a canonical form prior to the
previous operation.

Thus, in the Suzuki-Trotter decomposition (2.43) used in our algorithm,
no problem arises, as long as a sweep P̂∆t′ is followed by a transposed sweep
P̂ T

∆t′ or the other way along the sites. Unfortunately products like P̂ T
1 P̂ T

1 or

P̂1P̂1 appear in (2.43). This leads to following situations after applying for
example P̂1
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1
⊥ ?

2
⊥ ?

3
⊥ ?

. . .
⊥ ?

N−1
⊥ ⊥

N

. (2.51)

Implementing P̂1 at this point would fail due to the fact, that the first gate
Û1,2 would be applied within the possibly non-orthogonal basis set {|ΦR

23〉}.
This problem can however be easily overcome, by inserting a sweep of two-site
(unitary) identity operators

P̂ T
id ≡ 12,313,414,5 . . .1N−2,N−1, (2.52)

changing products of the form P̂1P̂1 into P̂1P̂
T
id P̂1 and P̂ T

1 P̂ T
1 into P̂ T

1 P̂idP̂
T
1 .

Because of the unitarity of the identity operators, applying P̂ T
id to (2.51) for

example, leads to

1
⊥ ⊥

2
⊥ ⊥

3
⊥ ⊥

. . .
⊥ ⊥

N−1
⊥ ⊥

N

, (2.53)

allowing for an following implementation of Û1,2 and the rest of P̂1.

Hence, to avoid orthogonality issues, the Suzuki-Trotter expansion (2.43)
that we use has to be modified to

Û imag
NN (∆t) = P̂ T

1 P̂1P̂
T
1 P̂−2P̂

T
1 P̂idP̂

T
1 P̂idP̂

T
1 P̂idP̂

T
1 P̂1 . . .

. . . P̂ T
1 P̂1P̂

T
id P̂1P̂

T
id P̂1P̂

T
id P̂1P̂

T
−2P̂1P̂

T
1 P̂1 + O(∆t5), (2.54)

to allow for example consecutive applications of the full non-unitary imagi-
nary time step evolution operator Û imag

NN (∆t). Thereby, [6(N − 3)] additional
gates, each requiring O(χ3d3) basic operations have to be added, not chang-
ing the overall complexity of O(Nχ3d3) for a single time-step.

Note that the state (2.53) is in a fully canonical form. To obtain physically
useful results, it is important to ensure that expectation value evaluations
only take place if this is the case! Thus, before calculating expectation values
after certain time steps in imaginary time evolution simulations, the identity
sweep P̂id has to be performed.
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2.1.4 Practical Considerations

Our implementation of the TEBD algorithm is fully written in stand alone C-
Code. For the singular value decomposition, the LAPACK routines ZGESVD
for real and DGESVD for imaginary time evolutions are utilised. In most real
time evolution cases a time-step, of 0.1 in the units of the energy scale suffices
due to the 4th order Suzuki-Trotter decomposition if the eigenenergies of the
Hamiltonian are of the order of one. Typical values of χ are ranging from
10–100, strongly depending on the physical system and the entanglement
contained in it, of course. Depending on the magnitude of the gap between a
ground and a first excited state, the order of imaginary time-steps required
to produce a fully converged matrix product ground state ranges between
1000 an 10000.

Product States

The typical numerical procedure consists of calculating a ground state, and
afterwards simulating the real time evolution whilst changing some external
parameters. The initial state before starting the imaginary time evolution
is typically a product state, which can be easily translated into the MPS
language, since

|Ψprod〉 ≡
(∑

i1

ci1 |i1〉
)

⊗
(∑

i2

ci2 |i2〉
)

⊗ . . .

(∑

iN

ciN |iN〉
)

=
∑

i1,i2,...,iN

ci1ci2 . . . ciN |i1i2 . . . iN〉 (2.55)

and the coefficients cim can always be chosen to fulfil

ci1ci2 . . . ciN
!
=

χ1∑

α1

χ2∑

α2

· · ·
χN−1∑

αN−1

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2

. . . λ[N−1]
αN−1

Γ[N ]iN
αN−1

(2.56)

by setting λ
[l]
αl = δαl,0,∀ 1 ≤ l < N and Γ

[m]il
00 = cil ,∀ 1 ≤ m ≤ N .

Numerical Improvements

There are some numerical tricks used in our code to significantly improve
performance and accuracy of the TEBD algorithm.

The first one is to use an adaptive value of χ for each bond between the
sites. Consider for example the first bond in the MPS decomposition (2.16).
The maximum possible value for the index α1, χ1 = d is equal to the in
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general small local dimension of the Hilbert space. Thus, due to boundary
effects a relevant amount of computational resources can be saved if d is
small, by not using a fixed value of χ for all bonds, but an adaptive one,
depending on the maximum χ value actually required. We define a small
zero-threshold for the value of any λ, and before each application of a two
site gate, the χ-values for each bond between sites relevant for this operation
is determined by the threshold. Then, for the contractions and the singular
value decomposition, only these χn ≤ χ-values are used instead of χ. This
not only improves the performance due to the boundary effects, but even
more in the case, that little entanglement is present at a certain bond. This
occurs for all bonds during the first few time-steps, provided one starts in a
non-entangled product state.

In the second step of the scheme to apply a two-site evolution operator
(2.37), the newly created Γ-arrays have to be multiplied by λ−1 values to
restore the original MPS form. Since these values can become extremely
small, this step is problematic due to numerical errors arising from a divi-
sion of small numbers close to the specific data type precision. This can be
overcome by using a threshold value above the critical precision of the used
data type below which the division isn’t performed. Note that the corre-
sponding number in the Γ-array is anyway irrelevant. Alternatively, we may
keep track of the position in the MPS where a λ-matrix has been multiplied
to a Γ-array and always store Γ-arrays multiplied by λ-vectors to the left or
the right. Thereby one finds, that for the way TEBD is implemented in our
case, the division is actually never required. Suppose for example, that a
two site evolution gate has been applied on sites 2 and 3 of a MPS, without
exhibiting the λ-division in (2.37)

. . .
λ[0]

1 λ[1]2
λ̃[2]

3λ[3] 4
λ[4]

. . .

. (2.57)

If we now just remember, as indicated in (2.57), that λ[1] and λ[3] are multi-
plied into the Γ-arrays 2 and 3 respectively, we can now easily evaluate the
next step in the time evolution process. This is because our Suzuki-Trotter
decomposition has been implemented in a way that the next gate after (2.57)
in any case acts on 1 and 2 or 3 and 4. In both cases, λ[2]/[3] would have to
be multiplied to Γ-array 2 or 3 again, to build the Θ matrix in (2.35). This,
and the preceding division can therefore anytime be fully avoided.

There is another way to tremendously improve the performance of the
TEBD algorithm. This is the optimisation of storage and manipulation of
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the state representation due to the implementation of physical conservation
laws. Unfortunately, for the physical problems discussed in this thesis, such
improvements are either not possible because this could not yet be imple-
mented for infinite system (Superfluid boson currents, chapter 3; iTEBD
algorithm, Section 2.2), or is not very advantageous in a finite system of Ry-
dberg atoms (Chapter 5), where the number of excitations is not constant in
time.

2.1.5 A Test System: Ising Model

We are going to compare our TEBD algorithm with a small exactly solvable
spin model for N = 10 sites. We choose an Ising model with a transverse
field, i.e. the Hamiltonian

Ĥ ≡
N−1∑

n

σ̂x
nσ̂x

n+1 + hz

N∑

n

σ̂z
n, (2.58)

where σ̂x
n and σ̂z

n denote the Pauli spin operators at site n defined by

σ̂x
n |↑〉n ≡ |↓〉n σ̂x

n |↓〉n ≡ |↑〉n
σ̂z

n |↑〉n ≡ |↑〉n σ̂z
n |↓〉n ≡ −|↓〉n, (2.59)

and hz is an magnetic field in z direction.
We expect the most interesting behaviour at the quantum critical field of

hz = 1. We are going to test the real time simulation of the total magneti-
sation Mz ≡

∑
k〈σ̂z

k〉 and the ground state spin-spin correlation 〈σ̂z
0σ̂

z
k〉.

In figure 2.2 we plot MZ as the system evolves under Hamiltonian (2.58)
with hz = 1, initially starting in the state |↓〉⊗10. Time-steps are of the size
∆t = 0.1 and we are utilising truncation parameters χ = 4, 8, 16, 32. We
find that for increasingly large χ the evolution is represented correctly up to
larger times, i.e. the curves are converging to the exact one. This indicates
that bipartite entanglement is emerging during time-evolution. For χ = 16,
the magnetisation is already satisfactorily reproducing the exact evolution
with errors of less than 1%.

We expect the results to become exact when employing a truncation pa-
rameter of χ = 32, since in a 10-qubit system the maximally entangled state
residing in in a bipartite splitting at the centre of the chain can be expressed
exactly with 25 = 32 Schmidt basis states. Indeed, in figure 2.3 we find
that the largest truncation error occurring during each time-step, is drops
to values markedly below machine precision, when χ = 32 in contrast to the
case of χ = 31. Furthermore, figure 2.2 indicates that the total difference
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Figure 2.2: Comparison of the time evolution of the magnetisation Mz from an
exact diagonalisation of the full Hamiltonian (2.58) to results from the TEBD
algorithm, employing several values of the Hilbert space truncation parameter
χ = 4, 8, 16, 32. The initial state is |↓〉⊗10. The lower picture shows the absolute
differences to the exact results. ∆t = 0.1.
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Figure 2.3: The largest truncation error (Equation (2.20)) occurring in each time-
step for the simulations of figure 2.2. For χ = 32 the error is below machine
precision at all times.

in the magnetisation remains constant at values of approximately 10−8–10−6

throughout the whole time evolution process in the χ = 32 case. Therefore,
we conclude that this is the size of the error due to the Trotter expansion
and other numerical noise processes.

In figure 2.4 we additionally visualise the emergence of entanglement by
plotting the von Neumann entropy S from equation (2.8) for each bipartite
splitting (bond) in the system. We observe oscillations with a maximum value
of approximately S = 3. Thus, we conclude that truncation parameters,
which are at least larger than χ > 23 = 8 are required to represent the
quantum states during the time evolution. However, comparing this to above
results we find that χ has to be markedly larger than this lower limit to obtain
faithful representations.

We obtain similar results concerning the convergence in χ, when per-
forming ground state calculations and comparing the spin-spin correlation
〈σ̂z

0σ̂
z
k〉 to exact values. However, we find out that the ground state contains

only very little entanglement and much smaller χ-values are sufficient. In
figure 2.5 we plot results from imaginary time-evolution over 1000 time-steps
∆t = 0.1 within the TEBD algorithm for values of χ = 2, 4, 8, 16. We plot
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Figure 2.4: The von Neumann entropy as a function of time for all bipartite
splittings (Bonds) for the evolution process of figure 2.2. χ = 32.

〈σ̂z
0σ̂

z
k〉 and the differences to the exact results for sites ranging from 1 to

10. Already for χ = 4 we find excellent agreement with the exact spin-spin
correlation. The von Neumann entropy in the centre of the system is only
SGS ≈ 0.55!

Finally, we want to give some benchmark values for the computational
time required for typical simulations. For the model (2.58) on our hardware2,
100 imaginary time-steps can be performed within the following runtimes,
depending on χ and the system size N (For comparability, adaptive χ opti-
misations have been switched off):

χ = 40 χ = 70 χ = 100
N = 40 10 min 50 min 2.6 h
N = 70 16 min 1.3 h 4.0 h
N = 100 22 min 1.7 h 5.3 h

For real time steps, this table modifies to:

2Intel Xeon 5345 (2.33 GHz) CPU, 8 GB RAM, GNU C-Compiler 4.1.2
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Figure 2.5: Comparison of the spin-spin correlation 〈σ̂z
0σ̂

z
k〉 (Sites 1–10) of the

ground state from an exact diagonalisation of the full Hamiltonian (2.58) to results
from imaginary time evolution within the TEBD algorithm, employing several
values of the Hilbert space truncation parameter χ = 2, 4, 8, 16. The lower picture
shows the absolute differences to the exact results.
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χ = 40 χ = 70 χ = 100
N = 40 20 min 1.8 h 5.4 h
N = 70 30 min 2.4 h 9.4 h
N = 100 42 min 3.2 h 11.3 h

The results are roughly consistent with the expected complexity of O(Nχ3d3)
and we find that ground state calculations and real time simulations of spin-
systems with more than 100 sites can be achieved within affordable computa-
tional resources, if the entanglement is bounded by a value Smax ≪ log2(100).

2.2 Infinite TEBD (iTEBD)

So far, the TEBD algorithm has been presented for one-dimensional finite
quantum systems. Many physical problems, appearing for example in solid
state physics are of such large dimensions, that they are considered to be
infinite in analytical models, thereby completely ignoring boundary effects.
In this chapter, we want to introduce a version of the TEBD algorithm, that
allows the near exact simulation of purely infinite systems, by exploiting
translation symmetries. The infinite TEBD algorithm (iTEBD) was devel-
oped by G. Vidal [10].

2.2.1 State Representation

Attempts have been made to simulate infinite systems by extrapolating re-
sults from finite systems with an increasing number of sites. These methods
are slow because of the fact, that large amounts of arrays have to be handled
and furthermore suffer from large uncertainties in the final results. How-
ever, quite surprisingly one actually only needs a very few number of sites to
implement the simulation of an translationally invariant infinite system.

Translation Invariance

As in the TEBD algorithm, we are going to use a matrix product state
representation (MPS). Consider an infinite chain of local Hilbert spaces, each
of dimension d. The state of the system can be written in terms of the
Schmidt bases, to the left and the right of a certain bond b, {|Φ[b]L/R

α 〉}

|Ψ〉 ≡
χ∑

α

λ[b]
α |Φ[b]L

α 〉|Φ[b]R
α 〉, (2.60)



36 2. Simulation of 1D Quantum Systems

where the λ
[b]
α denote the Schmidt coefficients (see section 2.1.1). In general,

χ will be infinite in this case, but we are again going to set χ to a finite
value, truncating highly entangled basis states and verify the validity of this
approximation by convergence tests. Like in equation (2.10), we now expand

the vectors |Φ[b]R
α 〉 into the orthonormal Schmidt bases to the right of bond

b+1, {|Φ[b+1]R
β 〉} with coefficients λ

[b+1]
β , and the local basis of the site between

bond b and b+1, {|ib〉}. Therefore, we introduce the three-index array Γ
[b]ib
αβ ,

|Φ[b]R
α 〉 ≡

χ∑

β

d∑

ib

Γ
[b]ib
αβ λ

[b+1]
β |ib〉|Φ[b+1]R

β 〉. (2.61)

Inserting (2.61) into (2.60) results in the state representation

|Ψ〉 =

χ∑

α,β

d∑

ib

λ[b]
α Γ

[b]ib
αβ λ

[b+1]
β |ib〉|Φ[b]L

α 〉|Φ[b+1]R
β 〉. (2.62)

In the diagrammatic notation, equation (2.62) is written as

λ
[b]
α

ib

b
λ

[b+1]
β

. (2.63)

We now assume, that |Ψ〉 is translationally invariant by shifts of a single
site, which means that exactly the same state vector results from a represen-
tation at site b + 1 instead of b,

λ
[b+1]
β

ib+1

b+1
λ

[b+2]
γ

. (2.64)

Hence it follows, that λ
[b]
α = λ

[b+1]
β = λ

[b+2]
γ = · · · ≡ λ, and we only require

one λ to appear in the full state expansion. In the same way Γ[b] = Γ[b+1] =
Γ[b+2] = · · · ≡ Γ, and therefore only one Γ-array is required, too. Thus, by
only storing one Γ and one λ, a full infinite system can be represented via

. . .
λ

Γ
λ

Γ
λ

Γ
λ

Γ
λ

. . .

. (2.65)
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Translation Invariance by two-site Shifts

As in section 2.1, we are going to want to simulate time evolution by repeated
application of small next-neighbour evolution gates in a Suzuki-Trotter de-
composition. Unfortunately, these gates act on two subsequent sites and are
therefore partially breaking the invariance of representation (2.65). Thus, we

simply go one step further and expand the basis vectors |Φ[b+1]R
β 〉 from bond

b+1 in equation (2.61) into the Schmidt basis at bond b+2, {|Φ[b+2]R
γ 〉} with

Schmidt coefficients λ
[b+2]
γ , and the local basis at site b + 1, {|ib+1〉}. This

leads to a two-site representation

|Ψ〉 =

χ∑

α,β,γ

d∑

ib,ib+1

λ[b]
α Γ

[b]ib
αβ λ

[b+1]
β Γ

[b+1]ib+1

βγ λ[b+2]
γ |ib〉|ib+1〉|Φ[b]L

α 〉|Φ[b+2]R
γ 〉, (2.66)

or

λ
[b]
α

ib

b
λ

[b+1]
β

ib+1

b+1
λ

[b+2]
γ

. (2.67)

With the same symmetry argument as above, now assuming invariance by
shifts of two sites, it follows that the full infinite state can be represented by
just two arrays ΓA, ΓB and two λA, λB as

. . .
λA

ΓA
λB

ΓB
λA

ΓA
λB

ΓB
λA

. . .

. (2.68)

An infinite MPS (iMPS), as in (2.68) or (2.65) is again called to be in a
canonical form, if at each bond it can be expanded in orthonormal Schmidt
bases, like in (2.60).

It is important, not to confuse the real infinite state representation (2.68)
with the case of simple periodic boundary conditions. For example, a two-
qubit system with periodic boundary conditions would be only able to repre-
sent states, spanned by the four basis-vectors | . . . 01010 . . . 〉, | . . . 10101 . . . 〉,
| . . . 0000 . . . 〉 and | . . . 1111 . . . 〉, by storing |01〉,|10〉, |00〉 and |11〉 respec-
tively. In marked contrast, with a two-site infinite MPS representation, the
only limitation to the number of basis state used to span an arbitrary infinite
1D state, is the amount of allowed entanglement in the expansion according
to χ.
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2.2.2 Expectation Values

The computation of any expectation value can be accomplished completely
analogous to the finite case in Section 2.1. Simply, instead of the finite
MPS in (2.16), the canonical iMPS representation (2.68) expanded up to
any desired site difference has to be utilised for the contraction in (2.27).

2.2.3 The Algorithm

The iTEBD algorithm also works analogous to its finite TEBD counterpart,
described in Section 2.1. We decompose the real or imaginary time evolu-
tion operator, build from the matrix exponential of a two-site translationally
invariant Hamiltonian ĤNN,inf ≡

∑∞
j Ĥj,j+1, ÛNN,inf(∆t) ≡ e−iĤNN,inf∆t, with

small time-step ∆t, into next-neighbour gates via a Suzuki-Trotter expan-
sion. The gates are again applied by using steps (2.35) and (2.37) to update
the infinite MPS state representation. The only remaining task is to find a
sweep P̂∆t′ , ensuring an application of these small gates on the full system.
For example, a 4th order decomposition can be performed via

ÛNN,inf(∆t) = P̂ T
1 P̂1P̂

T
1 P̂−2P̂

T
1 P̂ T

1 P̂ T
1 P̂ T

1 P̂1P̂
T
1 P̂1P̂1P̂1P̂1P̂

T
−2P̂1P̂

T
1 P̂1

+ O(∆t5), (2.69)

with ∆t′ ≡ ∆t/12.

Two-site iTEBD

In the easiest case, a sweep P̂∆t′ only consists of two gates, denoted by
ÛAB ≡ e−iĤj,j+1∆t′ and ÛBA ≡ e−iĤj,j+1∆t′ ,

P̂ T
∆t′ ≡ ÛABÛBA. (2.70)

Note that the functional form of ÛAB and ÛBA is exactly the same. Their
definition only differs in the state representation they are acting on. ÛAB is
applied to an “AB”-state representation

λA

ΓA
λB

ΓB
λA

, (2.71)
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and is therefore equivalent to the following operation on the full infinite
system,

. . .
λA

ΓA
λB

ΓB
λA

ΓA
λB

ΓB
λA

. . .

ÛAB ÛAB

.
(2.72)

In the same way ÛBA acts on the “BA”-state representation,

λB

ΓB
λA

ΓA
λB

, (2.73)

and thus realises the other half of all operations, required to update the full
infinite chain under P̂∆t′ ,

. . .
λB

ΓB
λA

ΓA
λB

ΓB
λA

ΓA
λB

. . .

ÛBA ÛBA

.
(2.74)

ÛAB updates both Γ-arrays and λB, ÛBA the two Γ-arrays and λA.
Since the Suzuki-Trotter decomposition (2.43) requires 18 sweeps of the

form (2.70), for each full time step only 36 gate applications have to be per-
formed. Due to the singular value decomposition being again the bottleneck
in the computation of steps (2.35) and (2.37), a total of O(χ3d3) basic opera-
tions are required. Note that compared to the finite TEBD algorithm, which
utilises O(Nχ3d3) basic computations, this is even a saving of the order of
the number of N operations.

l-site iTEBD

It is important to note that of course the number of two Γ- and two λ-arrays
required to apply next-neighbour evolution gates is just a lower bound. If
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required, as for example in chapter 3, the whole infinite chain can also be
represented by l > 2 Γ- and λ-arrays,

. . .
λ1

Γ1
λ2

Γ2
λ3

. . .
λl

Γl
λ1

Γ1
λ2

. . .

. (2.75)

In this case, the Suzuki-Trotter sweep P̂∆t′ can be extended to

P̂
(l) T
∆t′ ≡ Û1,2Û2,3 . . . Ûl−1,lÛl,1, (2.76)

where Ûi,i+1 denotes the evolution operator e−iĤj,j+1∆t′ , updating Γi, Γi+1

and λi+1. Thus, in general a sweep on representation (2.75) requires l gate
operations rendering the overall complexity more precisely to O(lχ3d3).

Orthogonality Problems

The problem of possibly non-orthogonal Schmidt bases occurring during
imaginary time evolution, or in general during any application of non-unitary
gates is also present for the iTEBD algorithm. However, here the problem
has to be solved in a slightly different way than in Section 2.1.3

Consider the initially two-site canonical iMPS

. . .
⊥ ⊥

ΓA
⊥ ⊥

ΓB
⊥ ⊥

ΓA
⊥ ⊥

ΓB
⊥ ⊥

. . .

. (2.77)

After applying a non-unitary gate V̂AB to half of the infinite chain, the re-
sulting situation looks like

. . .
? ?

ΓA
⊥ ⊥

ΓB
? ?

ΓA
⊥ ⊥

ΓB
? ?

. . .

. (2.78)

3An alternative scheme to bring back any iMPS into its canonical form has been pre-
sented by R. Orus [31]
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Thus, we find out that despite of losing the canonical form of the iMPS we
are lucky and still can apply a gate V̂BA to the other half of the infinite state,
leading to

. . .
⊥ ⊥

ΓA
? ?

ΓB
⊥ ⊥

ΓA
? ?

ΓB
⊥ ⊥

. . .

. (2.79)

However, in contrast to the finite case, we now conclude that we are not al-
lowed to apply an half-infinite non-unitary gate on the same gate position as
the previous one. For example, both, applying V̂AB to (2.78) and using V̂BA

on representation (2.79) would fail. Hence, just in contrast to the amend-
ments of identity sweeps in equation (2.54), we now have to avoid terms
like P̂∆t′P̂

T
∆t′ or P̂ T

∆t′P̂∆t′ in the Suzuki-Trotter expansion. Therefore, equa-
tion (2.43) can be supplemented by identity operators 1AB and 1BA, which
act on the half-infinite “AB” chain (2.71) or “BA” chain (2.73) respectively.
Then, again with ∆t′ ≡ ∆t/12,

Û imag
NN,inf(∆t) = 1BAP̂ T

1 1ABP̂11BAP̂ T
1 1ABP̂−21BAP̂ T

1 P̂ T
1 . . .

. . . P̂ T
1 P̂ T

1 1ABP̂11BAP̂ T
1 1ABP̂1P̂1 . . .

. . . P̂1P̂11BAP̂ T
−21ABP̂11BAP̂ T

1 1ABP̂1

+ O(∆t5) (2.80)

can be utilised as decomposition of a full time-step, in which orthogonality
is guaranteed in every next-neighbour gate application. Note that due to the
final 1BA at the end of the expansion, after every time-step ∆t, the iMPS
is in a fully canonical form and any expectation value evaluation can be
performed. This can immediately be seen by applying the unitary operation
1BA on (2.78). By the amendments in equation (2.80) a total of 12 gate
applications had to be added, not changing the overall complexity.

The orthogonality problem is a little bit more subtle, if in place of the
two-site invariant representation (2.68), an l-site iMPS (2.75) is employed.
Consider for example the possibly non-unitary gate V̂1,2, performed on an

iMPS as the first step of an implementation of P̂
(l)
∆t′ . The situation afterwards

can be expressed as
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. . .
⊥ ?

Γ1
⊥ ⊥

Γ2
? ⊥

. . .
⊥ ⊥

Γl
⊥ ?

Γ1
⊥ ⊥

. . .

. (2.81)

We find that we would run into problems if we continued with the l-site
iTEBD sweep from equation (2.76), since at some point we would have to
apply a gate between sites l − 1 and l with the possibly non-orthogonal
basis set to the right of the bond between sites l and 1. Thus, we have to
ensure that this basis set remains orthonormal already at this stage. This
can be achieved by applying an identity gate between sites l and 1. Due
to the fact that the final element of P̂

(l)
∆t′ acts between sites l and 1, we also

require the Schmidt bases to the right of the bond between 1 and 2 to remain
orthonormal. The same care has to be taken for the transposed sweep and
additional problems arise if terms like P̂

(l)
∆t′P̂

(l)
∆t′ or P̂

(l) T
∆t′ P̂

(l) T
∆t′ appear in the

Suzuki-Trotter decomposition. Hence, to fully avoid problems for l-site iMPS
representations, we are in general already extending the sweep (2.76),

P̂
(l) imag
∆t′ ≡ 11,21l−1,lÛl,11l−2,l−1Ûl−1,l . . . Û3,411,2Û2,31l,1Û1,2 (2.82)

and separately define the “transposed” sweep, which is actually not related
by the transposition operation to (2.82),

P̂
(l) imag,transp
∆t′ ≡ 1l,112,3Û1,213,4Û2,3 . . . Ûl−2,l−11l,1Ûl−1,l11,2Ûl,1. (2.83)

Equations (2.82) and (2.83) inserted into our 4th order Suzuki-Trotter de-
composition (2.69) guarantees full orthogonality throughout time-evolution.
A total of 18× (l + 1) identity gates have to be added, also not changing the
final complexity of O(lχ3d3).

Numerical Drawbacks

Unfortunately, none of the numerical tricks discussed in section 2.1.4 can be
implemented in the infinite case.

The adaptive χ-method could actually be used also in the iTEBD algo-
rithm, however it is only of little use there. The computational saving due
to lower entanglement in bipartite splittings close to the boundary is absent,
and the savings for the first few time-steps in an imaginary time evolution
due to the initial product state also turn out to not justify this optimisation.
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Furthermore, the storage of λ-values within the Γ-arrays to avoid division
of small numbers is not applicable in the iTEBD algorithm. If, for example,
one applies a gate ÛAB that acts on representation “AB” (2.71) without ex-
hibiting the according division by λB, the resulting situation is the following,

. . .
λ̃A

BλB λB
A

λ̃A

BλB λB
A

λ̃A
. . .

. (2.84)

If one would now try perform a gate on the “BA” representation (2.71), in
the construction of the matrix Θ in step (2.35), (λB)2 instead of λB would be
inserted. Therefore in any case, at least one division by λ-values has to take
place. The same holds for an l-site iMPS. Hence, in the iTEBD algorithm
we use a small threshold value below which numbers are defined to be zero
as described in section 2.1.4 to avoid numerical inaccuracies.

Application to the Bose-Hubbard Model

We are going to extensively use the iTEBD algorithm presented in this section
to simulate transport properties of a system of bosons loaded into an optical
lattice potential in chapter 3.
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[5] S. Rommer and S. Östlund. Phys. Rev. B 55, 2164 (1997).

[6] F. Verstraete and J. I. Cirac. Phys. Rev. B 73, 094423 (2006).

[7] M. A. Cazalilla and J. B. Marston. Phys. Rev. Lett. 88, 256403 (2002).
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[13] F. Verstraete, J. J. Garćıa-Ripoll, and J. I. Cirac. Phys. Rev. Lett. 93,
207204 (2004).

[14] M. Zwolak and G. Vidal. Phys. Rev. Lett. 93, 207205 (2004).

[15] F. Verstraete and J. I. Cirac. arXiv: cond-mat/0407066 (2004).

[16] F. Verstraete, V. Murg, and J. I. Cirac. Adv. Phys. 57, 143 (2008).

[17] S. R. Clark and D. Jaksch. Phys. Rev. A 70, 043612 (2004).

[18] C. Kollath, Schollwock U., and Zwerger W. Phys. Rev. Lett. 95, 176401
(2005).

[19] A. Kleine, C. Kollath, I. P. McCulloch, T. Giamarchi, and U. Schollwöck.
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[27] C. Kollath, U. Schollwöck, J. von Delft, and W. Zwerger. Phys. Rev. A
69, 031601 (2004).

[28] M. Suzuki. J. Math. Phys. 32, 2 (1991).

[29] A. T. Sornborger and E. D. Stewart. Phys. Rev. A 60, 1956 (1999).

[30] Y.-Y. Shi, L.-M. Duan, and G. Vidal. Phys. Rev. A 74, 022320 (2006).

[31] R. Orus and G. Vidal. arXiv:0711.3960 (2007).



46 Bibliography



Chapter 3

Superfluid Boson Currents in
1D Lattices

In recent years, cold bosons in an optical lattice potential have developed
into an excellent system for studying coherent many-body quantum effects
in one, two or three dimensions. Seminal experiments have demonstrated the
existence of Mott insulating (MI) and superfluid (SF) quantum phases [1],
arising in the Bose-Hubbard model [2] and therefore indicating the validity
of this model in the optical-lattice realisation [3].

Recently, also non-equilibrium dynamics within the Bose-Hubbard model
have become a rising field of interest, especially the fate of a finite current,
induced to bosons initially in an equilibrium SF ground state. A dynamical
instability of this current was discovered experimentally [4] and its depen-
dence on current magnitude and interaction strength has been extensively
theoretically studied by E. Altman, A. Polkovnikov et al. [5], [6]. On the
mean-field level, a stability phase diagram could be computed, interpolating
between a classical instability in the limit of vanishing interactions (Gross-
Pitaevskii regime) and the static SF-MI transition for strong interactions.
Excellent agreement to this instability phase-diagram has been demonstrated
in recent experiments [7] for a 3D system. However, the same experiment
showed large deviations in the 1D case. In lower dimensions, quantum fluc-
tuations are causing this breakdown of the mean-field ansatz. They can be
analytically included in the limit of weak interactions and in the vicinity of
the SF-MI transition [6]. However, they turn out to be very challenging for
the case of an arbitrary interaction strength.

With the iTEBD algorithm (Section 2.2) at hand we have the possibility
to fill this gap of intermediate interaction strength, simulating full time-
evolution of currents under the full Bose-Hubbard Hamiltonian, in order to
make quantitative predictions as to what should be measured in an experi-
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ment.
In this chapter, firstly we will give a short theoretical overview of the

infinite 1D Bose-Hubbard model, which we are utilising in our numerical
calculations and will outline the dynamical instability theory, developed in [6]
(Section 3.1). We then present a way to study boson currents with the
iTEBD algorithm by making use of ground state calculations via imaginary
time-evolution and real time simulations (Section 3.2). Finally we will show
our results and build a stability crossover diagram for boson currents in an
infinite 1D lattice from them (Section 3.3).

3.1 Theoretical Overview

We will first introduce the Bose-Hubbard model, which turns out to be an
excellent model for treating cold bosons in an optical lattice potential [3]
under certain conditions. We will mention the main static ground state
features, i.e. the existence of the Superfluid (SF) and the Mott Insulating
(MI) T = 0 quantum phases [2]. Afterwards we introduce the boson current
operator, and develop a method to theoretically impose any desired mean
quasi momentum to the atoms in a lattice. We conclude with an overview
of the analytical results obtained for the onset of instability of the boson
current, developed by E. Altman, A. Polkovnikov et al. [5, 6].

3.1.1 Bose-Hubbard Model

It was shown by D. Jaksch et al. [3] that under certain circumstances, the
Bose-Hubbard model accurately describes a system of cold bosons loaded into
an optical lattice potential. Without trapping potential, the Bose-Hubbard
Hamiltonian takes the form (~ ≡ 1)

Ĥ = −J
∑

〈ij〉
b̂†i b̂j +

U

2

∑

i

n̂i(n̂i − 1). (3.1)

In the first term, b̂i (b̂†i ) are the bosonic annihilation (creation) operators at

lattice site i, obeying the bosonic commutation relations [̂bi, b̂j] = [b̂†i , b̂
†
j] = 0

and [bi, b
†
j] = δi,j. J is the hopping amplitude between neighbouring sites,

whose combinations of indices are denoted by 〈ij〉. The second term provides
a repulsive on-site interaction U , where n̂i ≡ b̂†i b̂i is the particle number
operator at site i. The filling factor of N particles on M lattice sites shall
be denoted n̄ ≡ N/M . A sketch of the terms in (3.1) is given in figure
3.1. The Bose-Hubbard model is valid in the regime where excitations to the
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Figure 3.1: Sketch of the terms occurring in the Bose-Hubbard Hamiltonian.

second Bloch band can be neglected, which requires that temperature and
interaction energy are sufficiently small compared to the trapping frequency
of the optical lattice (see below). Furthermore, only tunnelling between next-
neighbour sites is taken into account and interactions between particles not
located on the same site are neglected.

Derivation of the Bose-Hubbard Hamiltonian

We are going to sketch the derivation of the Bose-Hubbard Hamiltonian (3.1)
as it was first introduced in [3].

The spatially varying ac-Stark shift from a standing wave of laser light
far detuned from an internal transition of an atom gives rise to a potential
of the form VL ≡ V0 sin2(klx) (in 1D), with wavenumber kl ≡ 2π/λ ≡ 2π/2a
and lattice constant a. With this external potential in each dimension, we
start from the microscopic model, the second quantised Hamiltonian

Ĥ =

∫
d3x Ψ̂†(~x)

(
− ~

2

2m
∇2 + VL(~x)

)
Ψ̂(~x)

+
1

2

4πas~
2

m

∫
d3x Ψ̂†(~x)Ψ̂†(~x)Ψ̂(~x)Ψ̂(~x) (3.2)

with the bosonic field operator Ψ̂(~x). The first term consists of the kinetic
energy and the lattice potential, the second term gives rise to the interaction
of the particles which is approximated by a pseudopotential with sufficiently
short s-wave scattering length as (in the Born approximation).

The Bose-Hubbard Hamiltonian arises if the field operators are expanded
into maximally localised Wannier functions wn(~x − ~xi) with band index n,

Ψ̂(~x) ≡
∑

i,n

b̂i,nwn(~x − ~xi). (3.3)

Under the assumption that interaction energies and temperatures are much
smaller than the trapping frequency ωT , which is of the order of the separa-
tion of the lowest two Bloch bands as defined in the harmonic deep-lattice
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approximation via (klx)2V0 ≡ mω2
T x2/2, it is a very good approximation to

only consider the lowest band (n = 1). Then, the Bose-Hubbard parameters
U and J in equation (3.1) can be computed by inserting (3.3) into (3.2) and
identifying

J = −
∫

dxw0(x)

(
− ~

2

2m

d2

dx2
+ VL(x)

)
w0(x − a), (3.4)

U =
4πas~

2

m

∫
d3x |w0(~x)|4. (3.5)

Thereby, the two approximations have been made that tunnelling parameters
calculated over more than two neighbouring sites and all interaction energies
other than the on-site term U were neglected. All three approximations
in this derivation of the Bose-Hubbard model turn out to be valid if the
lattice depth V0, which can be controlled by the laser intensity, is sufficiently
large. That means V0 & 2ER with the recoil energy ER ≡ ~

2k2
l /2m of the

corresponding atoms [8].
By using very strong laser intensities in one (two) dimensions, hopping

in certain directions can be suppressed and the Bose-Hubbard model can be
effectively also implemented as two (one) dimensional system.

Quantum Phases

For integer n̄, ground states of the Bose-Hubbard Hamiltonian (3.1) exist in
two different quantum phases depending on the ratio of the on-site interaction
to the tunnelling parameter u ≡ U/J . This was first investigated by M. P.
A. Fisher et al. in reference [2].

In one dimension with n̄ = 1 for u . 3.37 [9], the system is in a super-
fluid phase, which is a quasi-condensate with a single particle density matrix
(SPDM) 〈b̂†i b̂j〉 exhibiting quasi off-diagonal long-range order. In the limit
u → 0, the state of the system takes the form

|ΨSF 〉 =
1√

N !MN

(
M∑

j

b̂†j

)N

|0〉, (3.6)

with |0〉 denoting the vacuum state with no particle in the lattice. In the
limit M → ∞ and N → ∞ at fixed n̄, (3.6) can be computed to tend to a
locally coherent product state,

|ΨSF 〉 ∝
∏

j

(
e
√

n̄ b̂†j |0〉j
)

. (3.7)
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On each site the ideal SF state (3.7) is characterised by Poisson number
statistics. This can be seen by noting that on a particular site k the local
state takes the normalised form

|ΨSF 〉k = e−n̄/2
∑

l

√
n̄

l

√
l!
|l〉k, (3.8)

and therefore the probability for m particles at this site is

Pm = |〈m|ΨSF 〉|2 = e−n̄ n̄m

m!
. (3.9)

For u & 3.37, the system is in a Mott insulating phase, a localised state
with exponentially decaying off-diagonal 〈b̂†i b̂j〉 elements. In the ideal limit
u → ∞, the MI state becomes a Fock state with fixed number of particles n̄
at each site,

|ΨMI〉 =
M∏

j

|n̄〉j. (3.10)

Note that the transition from a SF to an MI phase is only possible for exactly
integer filling factors n̄. Otherwise, even in the extreme MI limit u → ∞ a
fraction of bosons will remain delocalised on top of a frozen MI phase.

To show some examples, we do numerical ground state calculations using
imaginary time evolution within the iTEBD algorithm (Section 2.2) for an
homogeneous infinite 1D Bose-Hubbard model. We analyse the off-diagonal
long-range behaviour, i.e. look at the off-diagonal elements of the SPDM
〈b̂†i b̂j〉, and the eigenvalues of this matrix.

In figure 3.2, off-diagonal long-range behaviour over 400 sites is shown in
a system with filling factor n̄ = 1 for a SF phase at u = 3.0 < uc and a MI
case at u = 4.0 > uc. To show over which range our algorithm represents the
real long-range behaviour, we plot results for increasing values of the Hilbert
space truncation parameter χ = 50, 70, 100. We find that our calculation with
χ = 100 represents long-range behaviour well over a range of approximately
100 sites. In the SF case we find an algebraic decay (linear on the double
logarithmic scale) of the off-diagonal SPDM elements, indicating the quasi
long-range order, whereas in the MI case these elements decay exponentially.

To further observe the quasi condensate properties of our two example
phases, we compute the SPDM for a reduced portion of our system, typically
100 sites. A typical eigenvalue spectrum for this density matrix is shown
in figure 3.3. Whilst the condensate fraction is zero for the full infinite
system, we expect that the quasi-condensate will be recognisable as a strongly
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Figure 3.2: The off-diagonal elements of the SPDM 〈b̂†i b̂j〉 in the case of on-site
interaction u = 3.0 (SF regime) and u = 4.0 (MI regime) in an infinite 1D Bose-
Hubbard model with commensurate filling n̄ = 1. The results are obtained by
imaginary time evolution within the iTEBD algorithm, for different values of the
truncation parameter χ.

occupied mode in the SPDM in any finite part of the system. Numerically,
we indeed find that in the SF regime there exists a large first eigenvalue
λ1, indicating a quasi condensate with most particles in one quantum state,
namely the first eigenstate of the SPDM, whereas in the MI regime all SPDM
eigenstates have similar occupation numbers. Note that from the eigenvalues
of the SPDM, a quasi condensate fraction can be evaluated by building the
ratio

CS ≡ λ1/

S∑

m

λm = λ1/N (3.11)

over a certain range S. In general, we have found that an accurate evaluation
of CS over S sites requires larger values of χ as S is increased. For S = 100
we have found that χ = 100 typically provides well converged results.

The location of the SF to MI transitions in the Bose-Hubbard model can
be calculated analytically using a mean-field ansatz [2, 10]. In general, for
the n̄ = 1 transition in arbitrary dimensions it can be located at uMF

c ≈ 5.8z,
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Figure 3.3: The eigenvalue spectrum of the SPDM 〈b̂†i b̂j〉 resulting from a di-
agonalisation over a region of 100 sites from the infinite system for a SF state
(u = 3.0) and a MI state (u = 4.0) in an infinite 1D Bose-Hubbard model with
commensurate filling n̄ = 1. For this plot χ = 100 and no changes are visible if
χ = 50, 70.

where z is the coordination number i.e. the number of nearest neighbours.
Whilst finding good agreement to experiments and numerical simulations in
3D and 2D, mean-field results have shown to be poor in 1D as can be seen
by comparing the real transition point of uc ≈ 3.37 found in [9] to the mean-
field prediction of uMF

c ≈ 11.6. This is because large quantum fluctuations
invalidate the mean-field approach in the case of small z and therefore lower
dimensions. From figure 3.2 also in our simulations we conclude that the
critical on-site interaction is 3.0 . uc . 4.0, but we are not going to find the
transition point more exactly here. This has been analysed in detail using
variational DMRG methods in [9]. We will now go on to study dynamic
transport properties within the 1D Bose-Hubbard model.

3.1.2 Boson Currents

A quantity of interest for the dynamics of the particles is the boson current
ĵ and its fate during time evolution. The evolution of the particle number
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operator at a given site k, d
dt

n̂k can be evaluated in the Bose-Hubbard model,
by inserting (3.1) into the Heisenberg equation of motion (~ ≡ 1),

d

dt
n̂k = i[Ĥ, n̂k] =

J

i

∑

l

[b̂†l b̂l+1 + b̂†l+1b̂l , b̂†kb̂k]. (3.12)

Exploiting the bosonic commutation relations, (3.12) immediately reduces to

d

dt
n̂k =

J

i

(
b̂†k+1b̂k − b̂†kb̂k+1 − b̂†kb̂k−1 + b̂†k−1b̂k

)
. (3.13)

Analogous to the continuous case, where in the continuity equation the spa-
tial derivative of the current density equals the time derivative of the particle
density, we define the boson current by

ĵk − ĵk−1 ≡
d

dt
n̂k (3.14)

and identify from (3.13)

ĵk =
J

i

(
b̂†k+1b̂k − b̂†kb̂k+1

)
. (3.15)

Note that the average of the current expectation values 1
M

∑M
m 〈ĵm〉 is pro-

portional to the average group velocity calculated via the quasi momentum of
the particles. This can be seen by introducing the discrete Fourier transform
of the annihilation and creation operators b̂m ≡ 1√

M

∑M
q e−iq 2π

M
m âq (periodic

boundary conditions) and calculating

1

M

M∑

m

〈ĵm〉 =
J

iM

M∑

m

〈b̂†m+1b̂m〉 + H.c.

=
J

iM2

M∑

m

M∑

q1,q2

ei(q1−q2) 2π
M

mei 2π
M

q1〈â†
q1

âq2
〉 + H.c.

=
1

M

M∑

q

2J sin

(
2π

M
q

)
〈â†

qâq〉

≡ 1

M

M∑

q

2J sin (kqa)nkqa, (3.16)

where in the last step, the lattice momentum kq ≡ q 2π/L (with system
length L), the lattice constant a ≡ L/M and the quasi momentum distri-
bution function (MDF) nkqa ≡ 〈â†

qâq〉 have been defined. Here, 2aJ sin(ka)
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represents the group velocity corresponding to a particle with lattice momen-
tum k, as defined by vk ≡ dE(k)/dk from the lowest Bloch band dispersion
relation E(k) = −2J cos(ka).

The MDF can be evaluated directly from the SPDM via

np ≡
1

M

∑

n,m

e−ip(n−m)〈b̂†nb̂m〉, (3.17)

which is obtained by simply inserting the Fourier decompositions of â†
q and

âq in (3.16) and defining p ≡ kqa, which is the quasi momentum measured
in units of the inverse lattice constant.

The Kick Operator

Bosons, moving at a mean quasi momentum (per lattice unit) ka can be
created by applying the operator

K̂(ka) ≡
∏

l

ei(ka)ln̂l (3.18)

to a ground state vector of the system. To see this, it is useful to introduce
the relations

K̂b̂†ji
= b̂†ji

K̂eikaji (3.19)

K̂†b̂†ji
= b̂†ji

K̂†e−ikaji . (3.20)

These immediately follow from the Baker-Hausdorff identity

eA B e−A = B +
∑

m=1

1

m!
[A,B]m (3.21)

with [A,B]1 ≡ [A,B] and [A,B]m ≡ [A, [A,B]m−1] ∀m ∈ N > 1 and the
commutator

[±ika
∑

l

ln̂l, b̂
†
ji
]m = (±ikaji)

m b̂†ji
∀m ∈ N. (3.22)

Equations (3.19) and (3.20) allow to directly calculate the effect of the oper-
ator K̂(ka) on the MDF np of an arbitrary initial state:

1

M

∑

n,m

e−ip(n−m)〈K̂†b̂†nb̂mK̂〉 =
1

M

∑

n,m

e−i(p+ka)(n−m)〈b̂†nb̂m〉. (3.23)



56 3. Superfluid Boson Currents in 1D Lattices

Thus, K̂(ka) translates the MDF by an amount of ka, conserving its initial
shape. Therefore, if the initial state is a ground state with np distributed
around p = 0, the bosons are moving at an average quasi momentum of ka
after applying K̂(ka).

If the initial state is an ideal superfluid ground state (3.6) (u → 0),
the operator K̂ places all condensate atoms in the same ka-quasi momentum
state, characterised by a uniform phase difference of ka between neighbouring
sites. This follows from iteratively using (3.19),

K̂

(∑

j

b̂†j

)N

|0〉 =
∑

j1,j2,...,jN

eikaj1eikaj2 . . . eikajN b̂†j1 b̂
†
j2

. . . b̂†jN
|0〉

=

(∑

j

eikaj b̂†j

)N

|0〉. (3.24)

Furthermore, in the ideal superfluid case it is possible to calculate the bo-
son current expectation value immediately after applying K̂(ka). Therefore,
it is useful to note that

b̂n

(∑

j

eikaj b̂†j

)N

|0〉 = eikan

N∑

l=1

(∑

j

eikaj b̂†j

)N−1

|0〉, (3.25)

which simply follows from applying the bosonic commutation relation N
times. If one now assumes that all particles are in the normalised state

|ΨSF 〉 = 1/
√

N !MN
(∑

j eikaj b̂†j

)N

|0〉, relation (3.25) leads to

〈ΨSF |K̂†ĵnK̂|ΨSF 〉 =
N

iM

(
eika(n+1)e−ikan − e−ika(n+1)eikan

)

= 2n̄ sin(ka) (3.26)

This is consistent to equation (3.16) with

np = Nδp,ka. (3.27)

In the case of non-zero interaction energy U , the number of particles in
the state ∝ ∑

j eikaj b̂†j |0〉 will decrease, leading to a finite width in the
MDF. Thus, in the case of ka < π (the sine function is concave), due to
the symmetry of the ground state MDF, the quasi-momentum average and
therefore the initial current will decrease.



3.1. Theoretical Overview 57

In the opposite limit of infinite interaction strength, the ideal MI state
(3.10) does not support any current, which can be immediately seen by writ-
ing

b̂mK̂|ΨMI〉 = b̂m

M∏

j

eikajn̄|n̄〉j ∝ |n̄ − 1〉m
M∏

j 6=m

|n̄〉j (3.28)

and noting that therefore

〈ΨMI |K̂†ĵnK̂|ΨMI〉 =
J

i
〈ΨMI |K̂†b̂†n+1b̂nK̂|ΨMI〉 + H.c. = 0. (3.29)

Having introduced the MDF and the kick operator, we will give some
examples for the action of the kick operator applied to an infinite SF and MI
matrix product ground state within our iTEBD algorithm.
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Figure 3.4: The normalised momentum distribution functions for a SF (u = 3.0)
and a MI ground states (u = 4.0) before and after applying a kick operator (3.18),
K̂(ka = 0.25π), which translates the MDF by a quasi momentum of ka = π/4.
For this plot, 160 SPDM samples were used and χ = 100. No changes are visible
compared to χ = 50, 70 results.

In figure 3.4, we show the quasi momentum distributions (normalised to
one) of the SF ground state with u = 3.0 and the MI ground state with
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u = 4.0. The results are obtained from an imaginary time evolution within
the iTEBD algorithm with a truncation parameter of χ = 100 and a SPDM
evaluation range of 160 sites. As in the eigenvalue spectrum of the SPDM
in figure 3.3, also here we can distinguish between the two quantum phases.
Sharp distributed peaks around p = 0 arise in the SF phase whereas a broader
MDF indicates a MI phase. In the ideal SF limit, the peak would become
a Kronecker delta, (3.27). As shown in equation (3.23), the application of
the kick operator (3.18) K̂(ka = π/4) with kick strength ka = π/4 leads to
a translation of the whole MDF by an amount of π/4 in quasi-momentum
space.

3.1.3 Current Instabilities

Having created a finite current from a ground state of the Bose-Hubbard
model via (3.18), it is an interesting question if this current remains constant
in time (i.e. is really superfluid) or if it vanishes, and to which extent this
depends on the on-site interaction u and the kick strength ka. This can be
directly related to an experimental situation (like in [7]), where the appli-
cation of the Kick operator corresponds to an accelerated lattice, which can
for example be induced by slightly detuning the lattice laser beams. Ana-
lytical solutions for this problem have been computed in several limits by E.
Altman, A. Polkovnikov et al. [5, 6].

In the limit of weak interactions n̄J ≫ U with many particles occupying
one state, the system can be approximately described in a mean-field sense
by classical fields Ψi(Ψ

∗
i ) corresponding to 〈bi 〉 (〈b†i〉). The evolution of the

fields is governed by the discrete time-dependent Gross-Pitaevskii equation,
which for the one dimensional system takes the form

i
dΨi

dt
= −J (Ψi−1 + Ψi+1) + U |Ψi|2Ψi. (3.30)

In this weakly interacting Gross-Pitaevskii regime, solutions to equation
(3.30) are provided by current carrying plane waves Ψl = Ψ0e

i(kal−ωt) with
ω = −2J cos(ka) + U |Ψ0|2. The stability of these states can be evaluated in
a simple linear stability analysis [11, 12]. It turns out, that for cos(ka) < 0,
and therefore π/2 < ka < 3π/2 eigenfrequencies of perturbations become
imaginary, rendering the state unstable due to the exponential growth of
this perturbations in time.

A physical picture of this instability is given in [6]: In the limit of weak
interactions, a condensate is moving in the lowest Bloch band with a quasi
momentum independent superfluid density. For small linear perturbations in
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the uniform phase gradient ka, the resulting energy reads

E ′(ka) =
1

2
E(ka + δ(ka)) +

1

2
E(ka − δ(ka))

= E(ka) +
d2E(ka)

d(ka)2
(δ(ka))2 + O((δka)4). (3.31)

Hence, the energy difference δE ∝ d2E(ka)
d(ka)2

and it is a necessary condition

for stability that d2E(ka)
d(ka)2

> 0. Otherwise small perturbations would lead to
a decrease in the energy. Therefore, in the lowest Bloch band with energy
E ∝ − cos(ka), d2E/d(ka)2 ∝ cos(ka) and this stability condition is violated
if the quasi momentum ka is larger than the critical value of π/2.

In the regime of strong interactions, stability is obviously limited by the
static SF–MI transition, since the MI state does not support any superfluid
current. Thus, for integer filling and ka ≈ 0, superfluid current becomes
unstable if the interaction u ≡ U/J reaches the critical value uc of the tran-
sition. In the non-commensurate case, superfluidity is still possible beyond
uc, since parts of the system will always remain in the SF phase. However,
in this thesis we will only consider the case of n̄ = 1.

It is an interesting question, how the current stability for commensurate
filling interpolates in the region of intermediate interaction strength u and
arbitrary phase gradient ka as sketched in figure 3.5.

Figure 3.5: How does the current stability interpolate between the classical insta-
bility of ka = π/2 and the SF to MI transition point for an infinite homogeneous
1D Bose-Hubbard model?

In general, the question has to be addressed numerically. Stability crossover
diagrams have been calculated in [6] using the Gutzwiller ansatz, assuming
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factorisable (non-entangled) wavefunctions throughout the time-evolution.
This is equivalent to the mean-field approximation. Quantum fluctuations
of the condensate are completely neglected. Therefore, this method leads to
a sharp boundary causing a current decay when crossing a critical value of
ka and u. However, in contrast to higher dimensions, in a one dimensional
system quantum fluctuations play a crucial role. Quantum tunnelling out
of the condensate is causing a decay of the state before the mean-field tran-
sition and therefore broadening it. Rates for phase slips due to quantum
tunnelling as well as thermal activation have been calculated in [6] in the
limit of weak and strong interactions, quantifying this broadening. So far,
for arbitrary values of ka and u, no analytical calculations or exact numer-
ical simulations were possible. Exact numerical simulations are limited to
very small systems and can therefore only be used for very few values of ka
and are further suffering from boundary effects. By employing the iTEBD
algorithm (Section 2.2) for this problem, we are using a new approach of
numerical simulations for infinite systems. Thereby we are fully taking into
account quantum fluctuations in the sense that a large enough amount of
entanglement is considered throughout the time-evolution.

3.2 iTEBD Calculations

In this section, we discuss how to use the iTEBD algorithm to observe boson
currents in a homogeneous infinite 1D Bose-Hubbard model. We will explain
the numerical procedure and comment on the main numerical obstacles.

3.2.1 Numerical Procedure

To arrive at our goal, calculating a stability crossover diagram as indicated
in figure 3.5, we proceed in 3 major steps:

1. We prepare the ground state |ΨG〉 for given parameters U, J and n̄ using
imaginary time evolution for an infinite two-site MPS representation
within the iTEBD algorithm. We investigate values of 0.5 ≤ u ≤ 4.0
over the range from the SF ground state at u = 0.5 to the MI regime
(uc ≈ 3.37) with steps of ∆u = 0.5. All simulations are performed for
the commensurate n̄ = 1 filling case. To obtain a ground state with
a certain filling factor n̄, we add a chemical potential term −µ

∑
i n̂i

to the Bose-Hubbard Hamiltonian (3.1) and dynamically change µ to
adjust n̄ during imaginary time evolution. Convergence is tested by
observing asymptotic off-diagonal long-range behaviour of the SPDM
(see figure 3.2). The quality of the stationary ground state |ΨG〉 is
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further tested by switching to real time evolution and verifying a SPDM
staying constant in time.

2. For a desired quasi momentum shift in inverse lattice units ka we ap-
ply the operator K̂(ka) to |ΨG〉. Therefore, to take into account the
translational invariance of the kick operator, we extend the two-site
iMPS representation to l sites, depending of the value of ka. We are
using steps ∆ka = 0.05π for a range from very small kicks to the clas-
sical instability limit, i.e. 0.05 ≤ ka ≤ 0.50. Thus, for example in
the worst case of ka = 0.05π we have to use a l = 40 sites iMPS
representation to account for the 40 site periodicity of K̂(π/20). The
application of K̂ is then computed, by simply contracting the on-site
operator Ô

[m]
K (ka) ≡ ei(ka)mn̂m as indicated in (2.23) to each site m of

the iMPS.

3. We simulate the real time evolution of the kicked ground state, |Ψ(t)〉 =

e−iĤtK̂(ka)|ΨG〉, using the same values of U and J as in the ground
state calculations. We evaluate the expectation value of the current
operator 〈ĵk〉 = J

i
〈b̂†k+1b̂k − b̂†kb̂k+1〉 as a function of time as well as the

SPDM 〈b̂†i b̂j〉 and the MDF np ≡ 1
M

∑
n,m e−ip(n−m)〈b̂†nb̂m〉. We com-

pute condensate fractions CS over a region of S sites by diagonalising
the SPDM up to a maximum off-diagonal distance S and relating the
eigenvalues via λ1/

∑S
m λm.

Quality Checks

To obtain valid results from the iTEBD algorithm, three main approxima-
tions have to be met and convergence tests for different quantities have to
be performed.

1. The main approximation of the iTEBD algorithm is to use an adap-
tive truncated MPS representation utilising only a computationally
tractable small number of slightly entangled basis states. To ensure
that sufficiently many of these states are taken into account, we com-
pare results for truncation parameters χ = 50, 70, 100 and find good
convergence within these values. Additionally, we keep track of the
largest truncation error ǫj (2.20) occurring in each time step.

As an example for the ground state calculations, figure 3.2 in section 3.1
shows the χ-convergence in the off-diagonal elements of the SPDM with
increasing χ. Figure 3.6 shows example results for real time simulations
of the boson current and the quasi condensate fraction (evaluated over
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Figure 3.6: Results for boson currents and condensate fractions C100 as a function
of time after applying a momentum kick of ka = π/4. Plotted are results for
u = 0.5, u = 1.0, u = 2.0 and u = 3.0 (in this order from the top to the bottom).
For each value of u, three χ-values χ = 50, 70, 100 are utilised. We find convergence
for increasingly large χ. Total differences are reasonably small (up to 1% for
u = 0.5, 1.0) on a timescale 0 ≤ t ≤ 10 (J ≡ ~ ≡ 1), except if the current drops to
zero quickly (differences up to 10% for u = 2.0, 3.0).

100 sites). Truncation errors maxj (ǫj) for two of these examples are
plotted in figure 3.7.

We find convergence for increasingly large values of χ with differences
of a maximum of approximately 1% between the results of χ = 70 and
χ = 100 for u = 0.5 and u = 1.0 at time 10. In cases of larger u, where
the boson current drops to zero rapidly we observe larger differences
up to about 10%. In this regions we observe current oscillations and
small condensate fractions that are slowly increasing for large times.
Despite the fact that in this case the quantitative values between the
results of different χ-values are quite large, qualitatively we still find the
same behaviour of an oscillating decreasing current and a monotonically
decreasing condensate fraction.

In figure 3.7 we find that the largest truncation error of each time-step
continuously increases during time evolution. This indicates a general
increase of the entanglement in the system with time. Comparing figure
3.7 with figure 3.6 leads to the conclusion that roughly at a truncation
error of 10−5, errors become visible on the scales on which we observe
the boson currents and the quasi condensate fractions.
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Figure 3.7: The largest truncation error ǫj (Equation (2.20)) in each time-step
for the real time simulations with u = 1.0 and u = 3.0 from figure 3.6.

2. Dealing with an infinite Bose-Hubbard-model, in principle the dimen-
sion of the local Hilbert space at a particular site (i.e. the maximum
possible occupation number) is infinite and therefore cannot be treated
numerically. Nevertheless, it is clear that for a filling factor of n̄ = 1,
the probability for high occupations at a single site becomes very small.
For example, in case of an ideal MI product ground state, a local di-
mension of d = 1 would suffice and for an ideal SF locally coherent
state with Poisson number statistics (3.7) we expect the probability
of k particles at a particular site to decay like 1

k!
(see equation (3.9)).

Therefore, it is a very good approximation to truncate the local Hilbert
space at some small upper dimension. In our simulations we compare
local dimensions of 6 and 8, without observing any noticeable effect.
We furthermore evaluate the probability for the maximum allowed sin-
gle site occupation as a function of time and verify that this number is
close to zero.

In figure 3.8, we plot results of boson current simulations for u = 1.0
and u = 3.0 ground states kicked by ka = 0.25π and compare the effect
of increasing the local dimension from d = 6 to d = 8. Furthermore
we show the local probabilities for the maximally allowed single site
occupation p (〈n̂i〉 = d).
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〈ĵ
k
〉 u = 1.0, d = 6

u = 1.0, d = 8
u = 3.0, d = 6
u = 3.0, d = 8

10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3

 0  1  2  3  4  5  6  7  8  9  10

Time

p
(〈

n̂
i〉

=
d
)

u = 1.0, d = 6
u = 1.0, d = 8
u = 3.0, d = 6
u = 3.0, d = 8

Figure 3.8: The left plot shows a comparison between the boson current evolution
computed with local dimensions d = 6 and d = 8 for u = 1.0 and u = 3.0 with
quasi momentum kick ka = 0.25π. Only differences of less than 0.5% are visible.
The right picture shows the time evolution of the local probabilities for d particles
being at one particular site. In the cases of larger on-site interactions, the particles
are localised to a larger extent and the probability for high single site occupations
in the n̄ = 1 case decreases.

We find that on the scale we analyse the boson current, almost no dif-
ferences (smaller than 0.5%) are visible comparing calculations with
d = 6 to d = 8. The probabilities for the maximum single site occupa-
tion remains smaller than 10−3 for all values of u. The error by setting
a limited local dimension increases with decreasing on-site interaction,
since in that case the state of the system is delocalised to a larger ex-
tent and states with higher occupations on single sites become more
probable.

3. We are splitting the full evolution operator Û ≡ e−iĤt into two-site
gates, employing a 4th order Suzuki-Trotter decomposition (Section
2.2.3). Hence, sufficiently small time-steps ∆t have to be used to keep
the errors from the non-commutativity between these two-site gates
small. Due to the high order of our decomposition, we use time-steps
of ∆t = 0.1 (J ≡ ~ ≡ 1) in all our simulations. We compared results
to calculations with smaller time-steps and confirmed that the Trotter
error is thereby reduced well below other errors occurring during the
simulations.

An example simulation, comparing time steps of ∆t = 0.1 with time-
steps ∆t = 0.05 is shown in figure 3.9. Like in figure 3.6 we compare
a system kicked with quasi-momentum ka = 0.25π, for values of u =
0.5, 1.0, 2.0, 3.0. The truncation parameter is χ = 100.

We find that the differences in figure 3.9 are very small and even give
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Figure 3.9: Time evolution of the boson current after a momentum kick of ka =
0.25π with u = 0.5, 1.0, 2.0, 3.0 (from the top to the bottom) for different values
of the time step ∆t = 0.1 and ∆t = 0.05 (left side) and the absolute differences
between the curves (right side). Even the fast decaying initial behaviour for u = 3.0
is simulated correctly in the case of ∆t = 0.1

rise to the correct fast decaying behaviour for small times in the rapid
decaying case of ka = 0.40π. The differences are only increasing in
regions where the errors from the Hilbert space truncation becomes
relevant and therefore do not originate from the Trotter error.

3.3 iTEBD Results

We are now going to show the results of our numerical simulations of the
bosonic transport properties in an infinite homogeneous 1D Bose-Hubbard
model. We will first examine the properties immediately after translating the
ground states of our systems by an amount of ka in quasi momentum space.
We then start the real time simulations and will observe some example curves
of decaying boson currents and quasi condensate fractions. The dynamics of
the decay, i.e. the change in the off-diagonal long-range properties with time
as well as the evolution of the MDF will be analysed for varying u and ka.
Finally we present a stability crossover diagram as sketched in figure 3.5,
separating regions of specific quasi momenta ka and on-site interactions u
that exhibit superfluid behaviour on long timescales from regions of rapid
current decay.

3.3.1 Properties at t=0

We can verify the properties of the state at time t = 0, immediately after
applying the operator K̂(ka) to the ground state. For the case that the kick
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operator is applied to an ideal SF ground state, the expectation value of the
current operator was calculated in (3.26). For a filling factor of n̄ = 1 it
reads

〈ĵn〉 = 2 sin(ka) (3.32)

at all sites n of the homogeneous infinite system. In section 3.1.2, it was
further argued that introducing interactions between the particles will lead
to a general decrease of these values. Finally in the ideal MI limit with
u → ∞, the initial boson current is expected to completely vanish.
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Figure 3.10: Boson current expectation value 〈ĵn〉 immediately after applying the
initial momentum kick operator K̂(ka) to the ground for several on-site interac-
tions u = 1.0, 2.0, 3.0, 4.0.

We find very good agreement with this prediction, shown in figure 3.10.
We plot the values of 〈ĵn〉 that arise from an application of the operator K̂(ka)
with quasi momentum ka ranging from 0.05π to 0.5π. Curves are shown for
several values of the on-site interaction u, ranging from u = 1.00 to u = 4.0,
including the SF-MI transition at uc ≈ 3.37. It is interesting that even in the
MI case at u = 4.0, the current only decreases by a relatively small amount
from the ideal SF case. This indicates a still existent off-diagonal order in
the MI regime, decaying exponentially though. We conclude that the regime
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of the ideal non-current allowing MI ground state for which equation (3.29)
holds is located at on-site interactions u ≫ 4.

3.3.2 Current / Condensate Fraction Decay

After computing the ground states for 0.5 ≤ u ≤ 4.0 and applying the kick
operator with 0.05π ≤ ka ≤ 0.5π, we simulate the real time evolution of the
boson current and the condensate fraction for times 0 ≤ t ≤ 10 (J ≡ ~ ≡ 1).
We thereby find considerable differences in the decay for different values of
ka and u. Figure 3.11 shows the time evolution of 〈ĵn〉 for a constant initial
momentum kick ka = π/10 with increasing values of the on-site interaction
u, ranging from the SF to the MI regime. The second example in figure 3.11
shows the differences of the decay for a fixed on-site interaction of u = 1.0
whilst increasing initial quasi momentum kicks.

We find a constant superfluid current only in the case of very small values
of ka = 0.1π at u = 1.0. For a slightly increased initial quasi momentum or
on-site interaction (ka = 0.2π at u = 1.0 and ka = 0.1π at u = 2.0), a small
decay of about 10% on the timescale of the simulation becomes visible. With
further increasing ka and u (u = 3.0 at ka = 0.1π and ka = 0.3π at u = 1.0)
the decay increases rapidly. For u & 3.0 at ka = 0.1π and ka & 0.3π at
u = 0.1, the current has completely vanished at t = 10.

Qualitatively, we find that the dependence of the current decay on ka
and u is analogous to the behaviour of the condensate fraction C100 decay on
these two quantities. In figure 3.12 the same plot as for the boson currents in
figure 3.11 is shown for the evolution of the quasi condensate fraction, which
is obtained by diagonalising the SPDM for a finite region of 100 sites.

A very important result that is clear from both figure 3.11 and figure 3.12
is that we do not find a sharp transition point in terms of certain values of
u and ka separating the current evolution into superfluid and non-superfluid
regions. Such sharp transition points are found in a Gutzwiller mean-field
analysis in [6]. But, like suggested in [6] for a 1D system in which large
quantum fluctuations destroy the sharp mean-field transition, we find a broad
crossover and superfluidity can only be distinguished from non-superfluidity
on a certain timescale.

We are going to further investigate this smooth crossover behaviour by
looking at snapshots of the normalised condensate fraction decay. We define
this quantity by

∆CS(τ) ≡ |CS(t = τ) − CS(t = 0)|
CS(t = 0)

. (3.33)
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Figure 3.11: Time evolution of the boson current 〈ĵn〉, ranging from super-
fluid behaviour to rapid decay for increasing values of u = 1.0, 2.0, 3.0, 4.0 for
a small initial momentum kick of ka = 0.10π and for varying initial kicks
ka = 0.1π, 0.2π, 0.3π, 0.4π, 0.5π at fixed on-site interaction u = 1.0 .
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Figure 3.12: Time evolution of the condensate fraction C100, ranging from su-
perfluid behaviour to rapid decay for increasing values of u = 1.0, 2.0, 3.0, 4.0
after a small initial momentum kick of ka = 0.10π, and for varying initial kicks
ka = 0.1π, 0.2π, 0.3π, 0.4π, 0.5π at fixed on-site interaction u = 1.0. The behaviour
is analogous to the boson current in figure 3.11.
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∆CS at time τ is one in the case that the quasi condensate fraction has
completely vanished at τ and zero if no decay has occurred. Figure 3.13
visualises the broad crossover by showing C100 at several times for a constant
on-site interaction u = 1.0 whilst changing the initial quasi momentum kick
from ka = 0.05π to ka = 0.5π.
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Figure 3.13: Time snapshots of the decay of the condensate fraction ∆C100 for
constant u = 1.0 as a function of ka.

A similar plot is obtained when crossing the boundary of superfluid to
non-superfluid regions at a constant value of the initial momentum kick of
ka = 0.1π and varying the on-site interactions from u = 0.5 to u = 4.0.
Results are shown in figure 3.14.

In figure 3.14 the condensate fraction decay seems to decrease again for
especially large on-site interactions. However, this effect can be explained
by oscillations of the boson current when dropping to zero quickly and is
therefore present in the case of large on-site interactions, e.g. u = 3.5 and
u = 4.0 and large kick strengths. This effect of “revival” of the current can
for example already be observed in figures 3.11 and 3.12 for u = 4.0 and in
figure 3.6 for the curve of u = 3.0. When the boson current decreases rapidly
it starts oscillating, whereas the condensate fraction reaches a minimum at
the beginning of these oscillations and then starts to slowly increase again.

In both figures 3.13 and 3.14, the transition curves seem to converge to
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Figure 3.14: Time snapshots of the decay of the condensate fraction ∆C100 when
crossing the “instability boundary” at a constant quasi momentum kick of ka =
0.1π as a function of u. The results are similar to figure 3.13.

a crossover with a fixed shape of non-zero transition width for times τ ≫
10. This shape does not have the form of a Θ function, which would be
the case if a sharp transition was present. Simulation of the system over
larger timescales becomes inefficient, as the errors due to the Hilbert space
truncations grow too large, resulting in qualitatively differences of the decay
behaviour for different values of the truncation parameter χ. Thus, it remains
unclear if the “slightly” superfluid currents, decreasing only little over the
simulation timescale will saturate at some fixed value or finally also decay to
zero.

However, we are not mainly interested in exact values of the condensate
fraction C100, which is calculated over an artificially finite region of our infinite
system, but we want to make a statement about the shape of a superfluid to
non-superfluid crossover on experimentally observable timescales. These are
of the order of 10 ms for typical 87Rb experiments like [4, 7], and could in
principle be extended up to the order of seconds due to the good isolation of
lattice systems from their environment. In regions where the Bose-Hubbard
model is valid, the typical lattice depth V0 is of the order of 10 ER, where ER

denotes the recoil energy of the atoms ER ≡ p2
r/2m with the recoil momentum
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pr ≡ h/λl. For these lattice depths, the tunnelling parameter J/~ is of the
order of 100 Hz. Thus, since our simulation time is given in units of 1/J with
J ≡ ~ ≡ 1, a time of τ = 10 corresponds to a time of the order of 100 ms in
realistic experiments, depending of the utilised lattice depth V0. Therefore,
simulating up to a time of τ = 10 in our units already reflects the behaviour
over an interesting experimentally observable timescale.

3.3.3 Dynamics of the Decay

Origins of the current stability or instability can be observed by analysing
time dependently the properties of the SPDM and the MDF.

Time Evolution of the Off-Diagonal SPDM Order
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Figure 3.15: The evolution of the off-diagonal long-range order for an initially
SF ground state (u = 1.0), which is kicked by ka = 0.40π. The initially algebraic
decay is converted into an exponential one.

In Fig. 3.15 the off-diagonal elements of the SPDM are shown at several
times of the evolution. Initially the system is in a SF ground state with
u = 1.0 and is translated by ka = 0.40π in quasi momentum space. As we
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Figure 3.16: More examples for the evolution of the off-diagonal elements in the
SPDM for an initially SF ground state (u = 1.0), kicked with several values of ka.

know from figures 3.11 and 3.12, the boson current is going to decay to zero
in this example.

We find that the off-diagonal correlation starts to decrease rapidly. Over
a large off diagonal distance that increases with time, the decay of the long
range order is converted from an algebraic into an exponential one. The
τ = 10 state is found to have an exponentially decaying off-diagonal SPDM
elements over approximately 10 sites like in a MI ground state case. There-
fore, we conclude that in the case of a non-superfluid boson-current decay,
the quasi condensate is destroyed and the particles are redistributed into a
localised final state from the initial quasi-condensate mode.

In figure 3.16, more examples for the time-dependence of the off-diagonal
SPDM elements are shown for stable superfluid behaviour (u = 1.0, ka =
0.10π), intermediate behaviour (u = 1.0, ka = 0.25π) and rapid decay (u =
1.0,ka = 0.50π). In the superfluid case, we find that the off-diagonal long-
range order is completely preserved over the full simulation time.
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Figure 3.17: The evolution of the eigenvalue spectrum of the SPDM from a
diagonalisation in a region of 100 sites for an initially SF ground state (u = 1.0),
which is kicked by ka = 0.10π and ka = 0.40π.

Alternatively, the loss of the quasi condensate in the case of a decaying
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current can also be analysed by observing the time-evolution of the eigenvalue
spectrum of the SPDM that is evaluated for a finite region of the system of
100 sites as shown in figure 3.17.

We find, that in the case of decaying current with ka = 0.40π, the large
occupation of the first SPDM eigenstate has vanished at the end of the sim-
ulation, whereas in the superfluid case of ka = 0.10π, the largest eigenvalue
remains constant in time.

Time Evolution of the MDF
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Figure 3.18: The time evolution of the MDF in the stable superfluid regime at
u = 1.0 after a momentum kick of ka = 0.10π and in the unstable regime in case
of a momentum kick of ka = 0.30π.

We can analyse the time evolution of the quasi momentum distribution
function after the quasi-momentum translation due to the application of the
kick operator. In figure 3.18 we observe the system in the stable superfluid
region of u = 1.0 and ka = 0.10π and compare the decay behaviour to the
non-stable case, when applying a kick of ka = 0.30π.

As expected from the previous results, in 3.18 we observe an almost com-
pletely stable momentum distribution if K̂(0.10π) is applied. The sharp peak
almost remains constant in terms of width and position in quasi momentum
space. If instead a kick of ka = 0.3π is applied, at t = 10 the particles
have completely redistributed from the initially sharp peak to a new much
broader MDF at a lower average quasi momentum. The increasing width of
the distribution is again related to the fact that the final state is localised
and off diagonal correlations are decaying exponentially. However, as was
already seen in figure 3.11, the current and therefore also the average quasi
momentum has not completely decayed to zero at t = 10.

We can compare this dynamics of the MDF to regimes of stronger on-
site interactions in which case we expect a much faster decay. Therefore, we
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show the same plots as in figure 3.18 for an increased interaction of u = 3.0
in figure 3.19.
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Figure 3.19: The same plot like in figure 3.18 but with a larger on-site interaction
of u = 3.0, showing the time evolution of the MDF for momentum kicks of ka =
0.1, 0.3.

We observe similar dynamics of the decay for the case of u = 3.0 with
ka = 0.1π as for u = 1.0 and ka = 0.3π in figure (3.18). This is not surprising,
since also the behaviour of the current and the condensate fraction decay in
figures 3.11 and 3.12 is similar. For a momentum kick of ka = 0.3π at
u = 3.0, however, we find an extremely rapid decay and already at time
τ = 2.5 the sharp peak has completely vanished. In this case, the final state
at τ = 10 has a very broad MDF with a FWHM of approximately half of the
first Brillouin zone and is distributed around zero quasi momentum.

3.3.4 Stability Crossover Diagram

Finally, we present results for a stability crossover diagram as sketched in
figure 3.5. To obtain this diagram from our simulations we are observing
time-snapshots of the decay of the boson current, which we define as

∆〈ĵn〉(τ) ≡ |〈ĵn〉(t = τ) − 〈ĵn〉(t = 0)|
〈ĵn〉(t = 0)

, (3.34)

and the decay of the condensate fraction ∆CS as defined in (3.33) on a ka-U
grid. We use on-site interaction values of 0.5 ≤ u ≤ 4.0 with grid spacing
of ∆u = 0.5 and quasi momentum kicks between 0.05π ≤ ka ≤ 0.50π with
spacing ∆ka = 0.05π. To get smooth results, we use a spline interpolation
between the data points. To see a convergence effect within our timescale
like in figures 3.13 and 3.14 we build the crossover diagram for times τ = 4,
τ = 7 and τ = 10.
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The results for the boson current decay are shown in figure 3.20, the same
plots for the quasi condensate fraction decay obtained from a diagonalisation
of the SPDM over 100 sites is shown in figure 3.21.

The behaviour in the stability crossover diagrams is more clear from the
condensate fraction decay ∆C100 than from the current decay ∆〈ĵn〉, because
as we have seen earlier, the decay behaviour of the current exhibits oscilla-
tions, whereas the condensate fraction typically decreases monotonically (see
figures 3.11 and 3.12).

In both, figure 3.20 and 3.21 we find regions with real superfluid behaviour
for values of u . 1.5 and ka . 0.15π and regions where the current vanishes
for u & 2.5 and ka & 0.25π. In the intermediate region we observe a smooth
crossover. The width of this crossover region is decreasing for increasing times
τ = 4, 7, 10, however the shape remains identical at all three times. We verify
that in the classical limit of small on-site interactions, the stability crossover
tends to the classical limit of ka = 0.5π and for ka ≈ 0 to the vicinity of the
SF-MI transition at uc ≈ 3.37. We find that the critical momentum kicks
and on-site interactions are in general smaller than predicted by a Gutzwiller
mean-field analysis in [6], in which the transition curve interpolates between
the classical instability limit and the mean-field critical on-site interaction of
uc = 11.6.

The shape of this crossover should be directly accessible in experiments
like [7]. The application of the kick operator can be implemented by ac-
celerating the lattice potential via detuning the counterpropagating laser
beams forming the lattice. The time evolution of condensate fractions can
be evaluated in time-of-flight measurements after switching off all confining
potentials [7]. Also in the experiment, a condensate fraction will be visible
due to the finite size of the observed system.
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Figure 3.20: Stability crossover, visualised by an interpolation between values of
the boson current decay ∆〈ĵn〉(τ) at times τ = 4, 7, 10.
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Figure 3.21: Stability crossover, visualised by an interpolation between values of
∆C100 at times τ = 4, 7, 10.



Bibliography 79

Bibliography

[1] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch. Nature
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Chapter 4

Simulation of Long-Range
Interactions

In chapter 2 we introduced the TEBD algorithm, originally proposed by
G. Vidal [1], which makes it possible to perform simulations of the time
evolution and to compute ground states of a 1D quantum system with lat-
tice Hamiltonians containing next-neighbour terms. However, to simulate
physical systems with long-range interactions it is also desirable to have al-
gorithms at hand making possible the implementation of Hamiltonians with
terms ranging over several sites. Some ideas for achieving this task have
already been presented, which either use techniques complementing the ex-
isting TEBD algorithm [2] or introduce completely new ideas, for example
the use of matrix product evolution operators [3–6].

In this chapter we complement the TEBD algorithm using the idea of
swapping lattice site indices. First we present how this idea can be im-
plemented for finite systems and introduce a long-range TEBD algorithm,
which we will denote lTEBD (Section 4.1). As in section 2.2 we will then ex-
tend this algorithm to infinite systems by exploiting translational invariance
in homogeneous systems. In keeping with our preceding notation we shall
abbreviate this algorithm ilTEBD (Section 4.2).

4.1 Long Range TEBD (lTEBD)

As we have presented it so far, TEBD is only capable of simulating real or
imaginary time evolution according to Hamiltonians containing solely next-
neighbour terms. This is because we have only provided a scheme for updat-
ing a MPS due to the application of next-neighbour gates. For longer range
interactions, a Suzuki-Trotter expansion will require applications of evolution
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operators that include contributions beyond nearest-neighbour terms.
The removal of this limitation is important in order to simulate physical

systems with interactions decaying slowly over a certain range. An example is
given in chapter 5, where a system of Rydberg-atoms excited in an an optical
lattice potential, exhibiting dipolar long-range interactions is simulated.

To include long-range interactions into our calculations, we use an ap-
proach that is based on the existing TEBD framework, i.e. we utilise the
MPS representation introduced in section 2.1.1. Additionally, we present a
scheme to apply long-range gates to a MPS. The main conceptual idea is the
process of swapping lattice indices, first suggested by Y.-Y. Shi et al. in [2].

We will first introduce the idea of swapping indices and show how this can
be used for the implementation of long-range gates. We will then introduce
a way of grouping these gates into sweeps in a Suzuki-Trotter expansion
and present the lTEBD algorithm. This algorithm is capable of simulating
systems with long-range interactions and only requires a small computational
overhead compared to the standard TEBD version.

4.1.1 Swapping Indices

Before we present the implementation for MPS representations, we introduce
the conceptual idea of swapping indices.

3 Site Long Range Gate

Consider a system with 3 sites, where we want to apply a long-range gate
between sites 1 and 3 to the state

|Ψ〉 ≡
∑

i1,i2,i3

ci1,i2,i3 |i1i2i3〉, (4.1)

with basis vectors |i1i2i3〉 ≡ |i1〉1 ⊗ |i2〉2 ⊗ |i3〉3. The long-range gate Û1,3

reads

Û1,3 ≡
∑

i1,i2,i3

∑

i′1,i′3

U
i′1,i′3
i1,i3

|i′1i2i′3〉〈i′1i2i′3|. (4.2)

The operator (4.2) can be rewritten as
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Û1,3 =
∑

i1,i2,i3

∑

i′1,i′3

U
i′1,i′3
i1,i3

|i′1i2i′3〉
∑

k1,k2,k3

〈i′1i′3i2|k1k2k3〉〈k1k3k2|

≡
∑

i1,i2,i3

∑

i′1,i′3

U
i′1,i′3
i1,i3

|i′1i2i′3〉〈i′1i′3i2|Ŝ†
2,3

=
∑

i1,i2,i3

∑

i′1,i′3

U
i′1,i′3
i1,i3

Ŝ2,3|i′1i′3i2〉〈i′1i′3i2|Ŝ†
2,3

≡ Ŝ2,3Û1,2Ŝ2,3, (4.3)

where in the second line, the swap operator

Ŝ2,3 ≡
∑

k1,k2,k3

|k1k3k2〉〈k1k2k3| = Ŝ†
2,3, (4.4)

and in the last line, the two-site gate Û1,2, which acts on sites 1 and 2 with

the same functional form of Û1,3

Û1,2 ≡
∑

j1,j2,j3

∑

j′1,j′2

U
j′1,j′2
j1,j2

|j′1j′2j3〉〈j′1j′2j3| (4.5)

has been defined. The swap-gate (4.4) simply interchanges the indices be-
tween sites 2 and 3. Thus, applying U13 to the state |Ψ〉 is equivalent to the
application of the same gate on sites 1 and 2 after swapping 2 and 3 followed
again by an index interchange of 2 and 3 to restore the original order.

Long Range Gate in a N-Site System

The case of larger systems is analogous. By introducing a general swap-
gate for an N -site system (basis |i1i2 . . . in〉 ≡ |i1〉1 ⊗ |i2〉N ⊗ · · · ⊗ |iN〉N),
interchanging indices i and i + 1

Ŝi ≡
∑

k1,...,ki,ki+1,...,kN

|k1 . . . ki+1ki . . . kN〉〈k1 . . . kiki+1 . . . kN |, (4.6)

it immediately follows that any long-range gate Ûi1,i2 , which acts over l =
i1 − i2 sites can be decomposed into
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Ûi1,i2 ≡
∑

j1,j2,...jN

∑

j′i1
,j′i2

U
j′i1

,j′i2
ji1

,ji2
|j1 . . . j′i1 . . . j′i2 . . . j3〉〈j1 . . . j′i1 . . . j′i2 . . . j3|

=
∑

j1,j2,...jN

∑

j′i1
,j′i2

U
j′i1

,j′i2
ji1

,ji2
Ŝi2−1|j1 . . . j′i1 . . . j′i2ji2−1 . . . j3〉 . . .

. . . 〈j1 . . . j′i1 . . . j′i2ji2−1 . . . j3|Ŝi2−1

= Ŝi2−1Ûi1,i2−1Ŝi2−1, (4.7)

and equivalently

Ûi1,i2 = Ŝi1Ûi1+1,i2Ŝi1 . (4.8)

Hence, it follows that the full long-range gate Ûi1,i2 can be expanded into

2(l − 1) swap-gates and the gate Ûi1,i1+1, which acts on two neighbouring

sites with the same functional form of Ûi1i2

Ûi1i2 = Ŝi2−1Ŝi2−2 . . . Ŝi1+1Ûi1,i1+1Ŝi1+1 . . . Ŝi2−2Ŝi2−1. (4.9)

Multiple Long Range Gates

If multiple two-site gates have to be applied after each other, like in the
Suzuki-Trotter decomposition of the TEBD algorithm, the number of swap-
gates can be substantially decreased, saving computational cost. For exam-
ple, three evolution operators Û1,2, V̂1,3 and Ŵ1,4, which act on sites 1 ↔ 2,
1 ↔ 3 and 1 ↔ 4 respectively, can be applied using only 4 instead of 6 swap
gates. This can be simply understood, by noting that

Ŵ1,4V̂1,3Û1,2 = (Ŝ1Ŝ2Ŵ3,4Ŝ2Ŝ1)(Ŝ1V̂2,3Ŝ1)Û12

= Ŝ1Ŝ2Ŵ3,4Ŝ2V̂2,3Ŝ1Û1,2, (4.10)

where the recursively inserted equation (4.8) and the fact that ŜiŜi = 1,
which follows immediately from the definition (4.6), has been used.

For a general series of gates, containing operations from next-neighbour
to l-site terms Û

(1)
i,i+1Û

(2)
i,i+2 . . . Û

(l)
i,i+l, we are further exploiting the condition

ŜiŜi = 1, by implementing

Û
(1)
i,i+1Û

(2)
i,i+2 . . . Û

(l)
i,i+l = Ŝi . . . Ŝl−3Ŝi+l−2Û

(l)
i+l−1,i+lŜi+l−2 . . .

. . . Û
(3)
i+2,i+3Ŝi+1Û

(2)
i+1,i+2ŜiÛ

(1)
i,i+1. (4.11)
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This invokes a total of l next-neighbour and 2(l−1) swap-gates. In contrast,
if only the expansion (4.9) would be used for each two-site operator Û , l
next-neighbour and (l2 − l) swap-gates would be required. Thus using (4.11)
instead of decomposition (4.9) leads to a computational saving, which is
quadratic in l.

4.1.2 Swapping MPS Indices

In the MPS representation (2.15) a swap-gate, which interchanges two neigh-
bouring indices is easy to implement. Consider the two-site expansion (2.32)
of the MPS at site l and m ≡ l + 1

|Ψ〉 =
∑

i,j

∑

α,β,γ

λ[l−1]
α Γ

[l]i
αβλ

[l]
β Γ

[m]j
βγ λ[m]

γ |i〉l|j〉m|Φ[l]L
α 〉|Φ[m]R

γ 〉. (4.12)

The state vector |Ψ〉 can be contracted to

|Ψ〉 =
∑

i,j

∑

α,γ

Θij
αγ|i〉l|j〉m|Φ[l]L

α 〉|Φ[m]R
γ 〉, (4.13)

with the matrix

Θij
αγ ≡

∑

β

λ[l−1]
α Γ

[l]i
αβλ

[l]
β Γ

[m]j
βγ λ[m]

γ . (4.14)

For a state vector of the form (4.13), the index interchange can be accom-
plished, by simply interchanging the i- with the j-elements in the Θ-matrix

Θ̃ji
αγ ≡ Θij

αγ, (4.15)

leading to the new state

|Ψ̃〉 =
∑

i,j

∑

α,γ

Θ̃ij
αγ|i〉l|j〉m|Φ[l]L

α 〉|Φ[m]R
γ 〉. (4.16)

Finally, to restore the original truncated MPS form, a Schmidt decomposition
of (4.16) followed by an β-index truncation has to be performed, resulting in
updated Γ and λ arrays

Θlm
αγ

SD
=

χl∑

β

Ll
αβλ̃βRm

βγ

Trunc.≈
χ∑

β

λ[l−1]
α Γ̃

[l]i
αβλ̃

[l]
β Γ̃

[m]j
βγ λ[m]

γ . (4.17)
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This whole process is visualised via

α

i

l
β

j

m
γ

O(χ3d2)−−−−→

α

i j

Θ
γ

O(χ2d2)−−−−→
l↔m

α

j i

Θ̃
γ

O(χ3d3)−−−−−−−−→
S.D. & Trunc.

α

i

l̃
λ̃

[l]
β

j

m̃
γ

O(χ2d)−−−−→

α

i

l̃

β

j

m̃

γ

. (4.18)

Like for a single two-site evolution step, O(χ3d3) basic operations are required
for a single swap-gate.

4.1.3 The Algorithm

For the simulation of a full evolution time step, we want to exploit equation
(4.11). Consider a N -site system with Hamiltonian ĤLR, containing terms
including interactions over a maximum of l < N sites and box-boundary con-
ditions. This implies that ĤLR can be written as sum over two-site Hamil-
tonians ĤLR ≡ ∑N−1

j

∑l
k;k+j<N Ĥj,j+k. Then, the time evolution operator

ÛLR ≡ e−iĤLR∆t for the full system can again be expanded into several re-
peated sweeps P̂∆t′ of [(N − l)l + (l − 1)l/2] two-site time evolution gates

Ûj1,j2 ≡ e−iĤj1,j2
∆t with time-steps ∆t′. We are again using a 4th order

Suzuki-Trotter decomposition (Equation (2.43)) and therefore 18 sweeps are
required.

ÛLR = P̂ T
1 P̂1P̂

T
1 P̂−2P̂

T
1 P̂ T

1 P̂ T
1 P̂ T

1 P̂1P̂
T
1 P̂1P̂1P̂1P̂1P̂

T
−2P̂1P̂

T
1 P̂1

+ O(∆t5). (4.19)
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Long-Range Sweep

To efficiently implement all gates of a single sweep, we are using the decom-
position (m ≡ N − l)

P̂ T
∆t′ =

Û1,2 Û1,3 Û1,4 . . . Û1,1+l

Û2,3 Û2,4 Û2,5 . . . Û2,2+l
...

...
...

...

Ûm,m+1 Ûm,m+2 Ûm,m+3 . . . Ûm,N

Ûm+1,m+2 Ûm+1,m+3 . . . Ûm+1,N
...

...

ÛN−2,N−1 ÛN−2,N

ÛN−1,N .

(4.20)

For the sweep P̂∆t′ , the Û operators are applied line-wise from the top left to
the bottom right. In (4.20) we have left out the swap operations, but each
line can be implemented according to equation (4.11).

Also in the MPS framework, each line in (4.20), containing a−1 elements
can be realised, using only the application of next-neighbour gates and swap-
operations according to equation (4.11):

. . . 1 2 . . . a a+1 . . .

Û1,2

1.

swap

2.

Û1,3

3.

swap

4.

. . .

. . .

Û1,a

(2a−1).

swap

2a.

Û1,1+a

(2a+1).

swap

(2a+2).

swap

3a.

swap

(3a+1). . . .

.
(4.21)

First, the next-neighbour evolution operator acts between site 1 and 2 is
applied, followed by an interchange of those indices. In the third step, the
long-range evolution operator Û1,3 is applied to sites 2 and 3, which are
effectively 1 and 3 due to the previous interchange. The index-swap followed
by the application of a long-range gate is repeated for increasing site index,
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until the gate Û1,1+a is applied. The index of site 1 can now be seen as being
located at site a. In the final steps (2a+2) to (3a+1), it is swapped back to
its original position.

For this specific line 3a + 1 swap-gate and next-neighbour evolution-
operator applications are required, each requiring O(χ3d3) basic operations.
Thus, for a full sweep P̂∆t′ through all two-site evolution operators, according
to (4.20), the number of required gates is found by summing the contributions
of all lines to

G ≡ [m(3l + 1) + 3((l − 1)l/2) + l]. (4.22)

The case of the transposed sweep P̂ T
∆t is performed analogous with the

only difference, that for every line in (4.20), the order of the operations in
scheme (4.21) is reversed.

Efficiency

In the case that the system size is large compared to the considered inter-
action length, (N ≫ l), G ≈ N(3l + 1). Thus, compared to a single sweep
in the standard TEBD algorithm, which requires N − 1 gate-applications
(Equation (2.42)), adding long-range interactions over a maximum of l sites
results in an overhead of only O(l) gates. If the interaction length is of O(N)
in a large system, l ≈ N ≫ 1, G ≈ (N − 1)N/2 + 2N . Thus, for the case of
long-range interactions, the simulation time overhead is of O(N).

This also holds for the full evolution step, since the number of sweeps
required for the Suzuki-Trotter decomposition remains the same in both, the
TEBD and the lTEBD algorithm. Furthermore in both cases, all gates are
limited by the Schmidt-decomposition step (O(χ3d3)).

In conclusion, simulating an evolution step of a large N -site quantum
systems with the lTEBD algorithm, including long-range interactions over l
sites results in an computational overhead of O(l) basic operations compared
to the next-neighbour TEBD algorithm (O(lNχ3d3) compared to O(Nχ3d3)).

Orthogonality Problems & Numerical Improvements

The solution to problems concerning the corruption of an initially canonical
MPS during imaginary time evolution, and numerical tricks, discussed in
section 2.1.4 for the TEBD algorithm can be largely transferred to lTEBD.

Note that if every line of the long-range sweep P̂∆t′ in equation (4.20)
is implemented by the scheme (4.21), all consecutive two-site gates in P̂∆t′

are affecting a position in the MPS that is located one site to the left, one
site to the right or at the preceding gate position. Thus, according to the
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reasoning, following (2.50), at any stage any two-site gate is affecting only
sites, represented in an orthogonal Schmidt basis. This also holds for all
gates in P̂∆t′P̂

T
∆t′ and P̂ T

∆t′P̂∆t′ . However, by performing the full Suzuki-

Trotter expansion (4.19), situations occur where P̂∆t′ is followed by P̂∆t′ or
P̂ T

∆t′ by P̂ T
∆t′ . Since at the end of the sweep P̂∆t′ , the situation of the MPS

can be visualised via

1
⊥ ?

2
⊥ ?

3
⊥ ?

. . .
⊥ ?

N−1
⊥ ⊥

N

. (4.23)

or after the application of P̂ T
∆t′ via

1
⊥ ⊥

2
? ⊥

3
? ⊥

. . .
? ⊥

N−1
? ⊥

N

. (4.24)

respectively, we can cure this situation as we did in section 2.1.3 by inserting
identity sweeps,

P̂ T
id ≡ 12,313,414,5 . . .1N−2,N−1, (4.25)

changing P̂∆t′P̂∆t′ to P̂∆t′P̂
T
id P̂∆t′ and P̂ T

∆t′P̂
T
∆t′ to P̂ T

∆t′P̂idP̂
T
∆t′ . Then, the full

long-range Suzuki Trotter expansion (4.19) has to be modified by adding 6
identity sweeps containing (N − 3) identity gates each,

Û imag
LR = P̂ T

1 P̂1P̂
T
1 P̂−2P̂

T
1 P̂idP̂

T
1 P̂idP̂

T
1 P̂idP̂

T
1 P̂1 . . .

. . . P̂ T
1 P̂1P̂

T
id P̂1P̂

T
id P̂1P̂

T
id P̂1P̂

T
−2P̂1P̂

T
1 P̂1 + O(∆t5). (4.26)

Note that analogous to the TEBD algorithm, also here a preceding identity
sweep to restore a canonical MPS is necessary before expectation values are
computed.

Application to the Dynamics of Rydberg Excitations in 1D Lattices

The lTEBD algorithm presented in this section will be extensively used in
chapter 5 where we are going to simulate a system of Rydberg atoms excited
in an optical lattice potential.
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4.2 Long Range iTEBD (ilTEBD)

Finally, in the last section of Chapter 4, we are going to extend the infinite
TEBD algorithm, presented in Section 2.1 to work with long-range interac-
tions and will abbreviate its name as ilTEBD algorithm.

4.2.1 State Representation

For the iTEBD algorithm, the next-neighbour gates break the translation
symmetry down to shifts over two sites. Therefore, an iMPS representation
consisting of at least two Γ- and two λ-arrays was required to simulate the
evolution of a next-neighbour Hamiltonian (Section 2.2.1). Now, we are
going to execute long-range gates Ûs1,s2 , which act between sites s1 and s2

with distance ∆s ≡ s2 − s1. Since we are not able to implement gates of
arbitrary large distance, we have to set an upper bound l. The number of Γ-
and λ-arrays at least required in the iMPS representation is then given by 2l.
This is the case, because a (l + 1)-site long-range gate breaks the symmetry
down to shifts of 2l. All these gates have to act in the same way to the left
and to the right site, i.e. Û(i,i+l) must act on the same sites like Ûi−l,i. This
can only by fulfilled if (i + l) − (i − l) = 2l such sites are present. Consider
for example the case l = 2,

. . . 3 4 1 2 3 . . .

. (4.27)

Û1,3 acts on the same sites, like Û3,1. If only 3 sites would be utilised, the
3-site-gate starting at site 1 that acts to the right would access sites 1 and
3, whereas the gate that acts to the left would hit 2 and 3!

Note that again, an arbitrary number of Γ- and λ-arrays can be supple-
mented to produce an iMPS with more than 2l sites. This could only lead to
ambiguities if gates act over more than l sites would be taken into account.

4.2.2 The Algorithm

We proceed like in the previous section. The system Hamiltonian can be de-
composed into two-site terms ĤLR,inf =

∑∞
j

∑l
k Ĥj,j+k. Both single two-site

operations, swap gates and evolution gates Ûj1,j2 ≡ e−iĤj2,j2
∆t′ are imple-

mented using steps (2.35) and (2.37). They are sorted within sweeps P̂∆t′ in
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a 4th order Suzuki-Trotter expansion. We use

ÛLR,inf(∆t) = P̂ T
1 P̂1P̂

T
1 P̂−2P̂

T
1 P̂ T

1 P̂ T
1 P̂ T

1 P̂1P̂
T
1 P̂1P̂1P̂1P̂1P̂

T
−2P̂1P̂

T
1 P̂1

+ O(∆t5), (4.28)

to simulate the full time evolution operator ÛLR,inf(∆t) ≡ e−iĤLR,inf∆t in an
infinite system with long-range interactions.

ilTEBD Sweeps

Thus, we only have to find a practical implementation for P̂∆t′ , containing
all required next-neighbour gates. Therefore, we decompose the 2l-site iMPS
into parts A and B,

. . .
λ1

A

Γ1
λ2

. . .
λl

A

Γl

λl+1

B

Γl+1

λl+2
. . .

λ2l

B

Γ2l

λ1
. . .

.
(4.29)

We then split up a single sweep into two parts, denoted ÂB and B̂A with

ÂB
T ≡

Û1,2 Û1,3 Û1,4 . . . Û1,1+l

Û2,3 Û2,4 Û2,5 . . . Û2,2+l
...

...
...

...

Ûl,l+1 Ûl,l+2 Ûl,l+3 . . . Ûl,2l

(4.30)

and

B̂A
T ≡

Ûl+1,l+2 Ûl+1,l+3 Ûl+1,l+4 . . . Ûl+1,1

Ûl+2,l+3 Ûl+2,l+4 . . . Ûl+2,1 Ûl+2,2
...

...
...

Û2l,1 Û2l,2 Û2l,3 . . . Û2l,l

(4.31)

and define a sweep as

P̂ T
∆t′ = ÂB

T
B̂A

T
. (4.32)
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This is similar to the iTEBD algorithm, i.e. equation (2.70).
For each row in (4.30) and (4.31), we can utilise the implementation

scheme, introduced for the finite lTEBD algorithm in (4.21). In practice,
therefore we additionally store l Γ- and λ-arrays to the right of the mem-
ory block B, to which we transfer the updated block memory A after an

application of ÂB
(T )

and vice versa after an application of B̂A
(T )

.
Since every row in (4.30) and (4.31) consists of l elements, 3l + 1 two-

site evolution- and swap-gates are required. In total, for a full time-step
simulation we have to apply 18× 2l × (3l + 1) gates, each implemented with
O(χ3d3) basic operations. Hence, the overall complexity for a single time-
step is O(l2χ3d3). Note that compared to the next-neighbour iTEBD case,
this is an overhead of O(l2) operations when considering interactions over
l sites. It can be understood by the fact that on the one hand we require
O(l) operations for the long-range gate implementations and on the other
hand we have to use a representation containing O(l) sites to capture the
homogeneous infinite system state.

Orthogonality Problems

The orthogonality problems can be faced in a very similar manner as for
the l-site iTEBD algorithm in section 2.2. We are going to use the Suzuki-
Trotter implementation from equation (4.28), but will make identity gate
amendments to the sweep P̂ T

∆t′ . However, in the ilTEBD case we are going

to extend the sweep on the level of the row implementations of ÂB and B̂A,
namely in (4.21). Therefore, we again have to separately define extensions
for the original and the transposed sweep, which are therefore not related
by the transposition operation anymore. Utilising our Diagrammatic nota-
tion as guide, we obtain the following situation after the first non-unitary
gate application within the first row implementation scheme (4.21) in P̂∆t′

(initially fully canonical iMPS),

. . .
⊥ ?

Γ1
⊥ ⊥

Γ2
? ⊥

. . .
⊥ ⊥

Γ2l
⊥ ?

Γ1
⊥ ⊥

. . .

. (4.33)

For the transposed case in P̂ T
∆t′ ,
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. . .
⊥ ⊥

Γ1
? ⊥

Γ2
⊥ ⊥

. . .
⊥ ?

Γ2l
⊥ ⊥

Γ1
? ⊥

. . .

. (4.34)

The only Schmidt basis corrupted in this step and leading to problems in
the remaining implementation of P̂∆t′ will be the set to the right of the
bond between 2l and 1. In the transposed case, the basis to the left of the
bond between sites 1 and 2 will cause problems. In general, considering the
bond to the left (right, in the transposed case) of the site position where
the actual row implementation (4.21) starts, the basis states to the right
(left, in the transposed case) of that bond is causing non-orthogonality issues
in the remaining sweep. Therefore, we can circumvent these problems by
immediately restoring the orthogonality by inserting an identity gate, which
acts on the two sites connected by this specific bond. Hence, we are going to
proceed like for the redefinitions of the sweeps for the l-site iTEBD algorithm
in equations (2.82) and (2.83), but will add identity operators after the first
gate of a row implementation instead of the single gate applications Ûk,k+1

in (2.82) and (2.83). Specifically we redefine

P imag
∆t′ ≡

11,2

Û2l,l . . . Û2l,3 Û2l,2 12l−1,2l Û2l,1
...

...
...

...
...

Û2,2+l . . . Û2,5 Û2,4 11,2 Û2,3

Û1,1+l . . . Û1,4 Û1,3 12l,1 Û1,2

(4.35)

and

P imag,transp
∆t′ ≡

12l,1

Û1,2 . . . Û1,l−1 Û1,l 12,3 Û1,1+l
...

...
...

...
...

Û2l−1,2l . . . Û2l−1,l−3 Û2l−1,l−2 12l,1 Û2l−1,l−1

Û2l,1 . . . Û2l,l−2 Û2l,l−1 11,2 Û2l,l

, (4.36)

which guarantees orthogonal Schmidt bases during the whole time-evolution
process, if inserted into (4.28). Note that in practice, partial updates of
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the auxiliary memory blocks mentioned above have to take place at earlier

stages and not only after the application of ÂB
(T )

and B̂A
(T )

. By utilising
this scheme, in total 18× (2l + 1)×O(χ3d3) basic operations are added and
the total complexity of O(l2χ3d3) is not affected.

4.2.3 A Test System: Haldane-Shastry Model

To test our ilTEBD algorithm we are going to perform ground state calcula-
tions by imaginary time evolution of the Haldane-Shastry spin model, which
is a Heisenberg chain model with interactions decaying like 1/r2 and has been
solved exactly in [7, 8]. The model Hamiltonian for an infinite system takes
the form

Ĥ =
1

2

∑

n

∑

m

J0

m2
~̂σn · ~̂σn+m, (4.37)

with the Pauli spin opertors ~̂σT ≡ (σ̂x, σ̂y, σ̂z), and can thus be easily imple-
mented into the ilTEBD algorithm. The spin-spin correlation of the ground
state has been calculated analytically (J0 ≡ 1),

〈σ̂z
0σ̂

z
k〉 = (−1)k Si(πk)

πk
(4.38)

with

Si(x) ≡
∫ x

0

dt
sin(πt)

πt
. (4.39)

In figure 4.1, we plot |〈σ̂z
0σ̂

z
k〉| from equation (4.38) compared to numerical

results, obtained from imaginary time evolution within our ilTEBD algorithm
for increasingly large values of the Hilbert space truncation parameter χ =
30, 50, 70 and an interaction length of l = 12.

We find good convergence for χ = 70 in the values of the correlations
over approximately 50 sites (differences of less than 3% to χ = 50 results).
However, our results, even if they are converged in χ, turn out to be not very
satisfactory. We find a very slow convergence for increasing values of the
interaction length l. Therefore, in figure 4.2 we compare the exact density-
density correlation to calculations with l = 6, 8, 10, 12 at χ = 70.

We find that the relatively large difference that is visible already after
approximately 10 sites, can be reduced only slowly with increasingly large
interaction length values l. We conclude that our ilTEBD algorithm is in
practice only applicable if we restrict ourselves to models with interactions
decaying articulately faster than 1/r2. This is simply a practical issue due
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Figure 4.1: Comparison of the exact solution of the ground state spin-spin cor-
relation for the infinite 1D Haldane-Shastry model (4.37) with numerical ilTEBD
results. Shown are results for Hilbert space truncation parameters χ = 30, 50, 70.
Interactions over l = 12 sites are considered.

to the l2 scaling of the required computational time. As an example, on
the hardware we are using1, 100 imaginary time-steps with a truncation
parameter of χ = 70 required approximately 3.0 h in case of an interaction
length of l = 6 and approximately 11.5 h in the case of l = 12. In general,
several 1000 steps are required for a fully converged ground state obtained
from an imaginary time evolution!

4.2.4 Outlook on Matrix Product Operators

The simulation of infinite 1D systems with interactions over larger distances
than neighbouring sites is not fully satisfactorily achieved within the ilTEBD
algorithm. For slowly decaying long-range interactions, a many site infinite
MPS representation has to be employed, which renders the algorithm ex-
tremely time consuming.

Recently, progress has been achieved in simulating infinite systems with
long-range interactions, in particular by introducing matrix product opera-

1Intel Xeon 5345 (2.33 GHz) CPU, 8 GB RAM, GNU C-Compiler 4.1.2
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Figure 4.2: Comparison of the exact solution of the ground state spin-spin cor-
relation for the infinite 1D Haldane-Shastry model (4.37) with numerical ilTEBD
results. The lower picture shows the absolute differences to the exact results.
Shown are calculations for interaction length truncations of l = 6, 8, 10, 12.
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tors (MPO). The conceptual idea is to also find a matrix product representa-
tion of the full evolution operator itself, thereby avoiding that translational
invariance is broken. In the case of a finite N -site evolution operator Û , this
might be visualised as

i1

j1

i2

j2

. . .

iN

jN

U ≡

i1

j1

Λ[1]

i2

j2

Λ[2] . . .

iN

jN

Λ[N ]

. (4.40)

A MPO can be applied to a MPS much more efficiently than two-site gates
in the TEBD algorithm and furthermore no multi-site iMPS representations
are required. First schemes how to construct a MPO are presented in [3–6]
and results seem to be very promising. Ground state calculations on the
Haldane-Shastry model (Equation (4.37) in Section 4.2) have for example
been performed in [4] with striking success. There, in contrast to the results
in figures 4.1 and 4.2, faithful reproduction of the spin-spin correlation could
be achieved over more than 1000 sites. It will be interesting to see which
future accomplishments are possible using this algorithm.
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Chapter 5

Dynamics of Rydberg
Excitations in 1D Lattices

Rydberg atoms are characterised by electronic excitations to states of high
principal quantum number n & 10 and have exaggerated properties [1]. The
large distance of the valence electron from the ionic core leads to a valid
description by the hydrogen atom model and is responsible for extraordinary
interaction properties. Despite their high excitation number, single Rydberg
atoms can have long lifetimes up to the order of milliseconds and because
of their strong interactions, Rydberg excitations in cold atomic gases have
become interesting for applications in quantum computation and quantum
simulation over the last ten years.

The classical radius of a Rydberg atom is proportional to n2a0 with
the Bohr radius a0, and due to their large size they are strongly polaris-
able. An ensemble of Rydberg atoms is therefore exposed to strong van
der Waals interactions. Furthermore, excitations can possess large electric
dipole-moments making them also strongly interact over long ranges by this
means. Both van der Waals and dipolar interactions lead to the interesting
effect of excitation blockade. If a laser is tuned to a Rydberg transition, the
shifts in the energy levels out of resonance, which are induced by the inter-
actions, prohibit further excitations in the vicinity of other Rydberg atoms.

In recent times, various proposals triggered a lot of interest in both the-
oretical and experimental work. This included propositions to utilise this
dipole blockade effect for fast quantum gates between two neutral atoms by
D. Jaksch et al. [2] or for information stored in collective states of a meso-
scopic ensemble by M.D. Lukin et al. [3]. This excitation suppression has
recently been demonstrated in several experiments (e.g. [4,5]) and important
steps towards implementations of quantum gates using this blockade mecha-
nism have been lately achieved (e.g. for two individual neutral atoms [6]).

99
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Besides that, also numerical studies were performed using simulation tech-
niques of many body Rydberg systems, which make use of a reduced Hilbert
space due to a perfect blockade effect [7, 8]. In these studies, mean numbers
of excitations and correlation functions emerging during time evolution have
been evaluated. It was shown that quantum correlations play a crucial role
and mean-field approaches are inappropriate.

We are going to numerically study a system of atoms loaded into a 1D
optical lattice potential with a laser tuned to a Rydberg transition. Full
dipolar long-range interactions are taken into account and we are going to use
the finite lTEBD algorithm (Section 4.1). In this way, quantum correlations
will be fully included within our simulations.

We will first describe the theoretical background of Rydberg excitations
and outline the blockade mechanism (Section 5.1). We introduce an effective
Hamiltonian of a system with atoms loaded into an optical lattice potential
and a laser tuned to a Rydberg transition. We then analyse the time evolution
of the system and the resulting state when we instantaneously switch on
the laser (Section 5.2). We continue with ground state calculations and find
several phases indicated by distinct density-density correlations. Afterwards,
we analyse a way to drive the system adiabatically from an initial “vacuum”
state with no excitations present in the lattice as close as possible to an
“anti-ferromagnetic like” ground state. This can be achieved by sufficiently
slow changes of the laser intensity and the detuning along a properly chosen
adiabatic path.

5.1 Background Overview

In this section we introduce the model Hamiltonian, describing a system of
Rydberg atoms in a 1D lattice. This model includes the creation of Rydberg
excitations from atoms in each lattice well, in addition to long-range dipole-
dipole interactions.

5.1.1 The Hamiltonian

We start from a system with a large number N of homogeneously distributed
non-interacting atoms loaded into a 1D periodic optical lattice potential of
the form VL ≡ V0 sin2(klx) with wavenumber kl ≡ 2π/λ and a lattice constant
of a ≡ π/kl. We consider a lattice with M sites and an external laser tuned to
an internal transition of the atoms to a Rydberg state, detuned by an energy
of δ. Neglecting interactions between the Rydberg atoms for the moment,
this leads to a model Hamiltonian of the form (~ ≡ 1)
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Ĥ0 ≡ ΩL

M∑

j

(
â†

j r̂j + âj r̂
†
j

)
+ δ

M∑

j

r̂†j r̂j, (5.1)

where â†
j (âj) denote the bosonic creation (annihilation) operators of the

atoms and r̂†j (r̂j) the creation (annihilation) operators for Rydberg excita-
tions at site j. ΩL is the Rabi frequency. Assuming that the number of atoms
per lattice site N/M ≫ 1 and for all j, 〈â†

j âj〉 ≈ N/M , we can neglect the
commutation relations of the atoms, which are only of the order of one and
replace for all j, âj ≈ â†

j ≈
√

N/M . The approximated Hamiltonian (5.1)
can then be written as

Ĥ0 = ΩL

√
N

M

M∑

j

(
r̂j + r̂†j

)
+ δ

M∑

j

r̂†j r̂j

≡ Ω
M∑

j

(
r̂j + r̂†j

)
+ δ

M∑

j

n̂j, (5.2)

where in the second line the effective Rabi frequency Ω ≡ ΩL

√
N/M and the

Rydberg particle number operator n̂j ≡ r̂†j r̂j have been defined.

Dipole Blockade Mechanism

We are now going to include interactions between the Rydberg atoms. To
obtain an organised dipole-dipole interaction we assume a constant electric
field set up along the z axis, perpendicular to our lattice dimension and
aligning existing dipoles parallel to ~ez. Following [1], we can calculate the
electric dipole moment of the Rydberg state (SI units)

µ ≡ e〈z〉 =
3

2
ea0(n1 − n2)n, (5.3)

where e denotes the elementary charge, a0 the Bohr radius, n the effective
principal quantum number and n1,n2 ≥ 0 are the parabolic quantum num-
bers. Those are implicitly related to the magnetic quantum number via

n = n1 + n2 + |m| + 1. (5.4)

We are going to consider only non-circular states, implicating a permanent
dipole moment. Specifically, we assume the case of |m| = 0 and furthermore
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the state with the maximum possible dipole moment, i.e. with n1−n2 = n−1.
Then,

µ =
3

2
ea0n(n − 1). (5.5)

Thus, the dipole-dipole interaction energy between sites i and j with |i−j| ≡
k > 0 can be expressed as

βk ≡ 1

4πǫ0

µ2

(ak)3
(5.6)

with permittivity ǫ0. This interaction energy leads to a shift in the energy
levels of the nearby atoms and therefore suppresses an excitation to the
Rydberg state within some blockade distance (ak)b. This distance can be
estimated by comparing βk with the linewidth of the excitation laser. For a
linewidth Γ, ranging approximately between 0.1 – 10 MHz and by assuming
a Rydberg excitation to n = 20 one can calculate that (ak)b ≈ 27 – 6 µm.
In general, (ak)b ∝ n4/3 and (ak)b ∝ Γ−1/3. In experiments Γ is typically
dominated by powerbroadening and therefore Γ = ΩL [9]. For typical optical
lattice wavelengths, a ≈ 500 nm and the blockade distance translates to
several tens of sites, i.e. we are considering a regime of strong blockade.

Naturally, Rydberg atoms are also exposed to van der Waals interactions.
The leading term is V vdW

k = −C6/(ak)6 (for specific values of C6 see [10]).
In general C6 ∝ n11, however for example in the case n = 20 for Rubidium,
C6 ≈ −7.5 × 1014 in Hartree atomic units. Therefore, the van der Waals
interaction energy between neighbouring sites is |V vdW

1 | ≈ 40 MHz. In con-
trast, the corresponding dipole-dipole interaction is β1 ≈ 16 GHz, which can
be calculated utilising (5.6) with (5.5). Thus, we are going to neglect van
der Waals interactions in our observations, but it is important to remember
that they play a crucial role for extremely large n or for states without or
small permanent electric dipole moments.

Writing the interactions (5.6) as part of our Hamiltonian leads to an
interaction term

Ĥint =
M−1∑

j

∑

1≤k≤M−j

βkn̂jn̂j+k (5.7)

in a finite system consisting of M sites. Thereby, we additionally leave out
local dipole-dipole on-site interactions of the form

βon−site ≡
1

4πǫ0

µ2

(ǫ)3
(5.8)



5.2. lTEBD Calculations 103

with a site dimension of ǫ ≪ a. Instead, since βon−site ≫ βk, we restrict
ourselves to a local Hilbert space dimension of two and simply do not allow
double or higher occupation. Note that due to this limitation of the local
dimension to d = 2, the model is also valid for a fixed number of particles on
each site, e.g. for a Mott insulator (Section 3.1).

Finally this leads us to the full model Hamiltonian residing in an M -site
Hilbert space with local dimensions of d = 2, (~ ≡ 1)

Ĥ = Ω
M∑

j

(
r̂j + r̂†j

)
+

M−1∑

j

∑

1≤k≤M−j

β0

k3
n̂jn̂j+k + δ

M∑

j

n̂j, (5.9)

where

β0 ≡
1

4πǫ0

µ2

(a)3
. (5.10)

Note that the third detuning term can also be interpreted as negative chem-
ical potential µ ≡ −δ.

Equation (5.9) is an implementation of a spin 1/2 Hamiltonian with the
identifications |0〉j = |↓〉j, |1〉j = |↑〉j, σ̂x

j = r̂j + r̂†j and σ̂z
j = 2(n̂j − 1/2).

The Hamiltonian (5.9) can then be written as

ĤSpin = Ω
M∑

j

σ̂x
j +

M−1∑

j

∑

1≤k≤M−j

(
β0

4k3
σ̂z

j σ̂
z
j+k +

β0

2k3
(σ̂z

j + σ̂z
j+k)

)

+
δ

2

M∑

j

σ̂z
j , (5.11)

where constant terms have been dropped.
In practice, in our numerical simulations later in this chapter we will not

take into account interactions over arbitrary many sites. Instead, we will in
the second term of (5.9) and (5.11) restrict the k index to values 1 ≤ k ≤ l
with a maximum interaction length l, thereby neglecting terms of O(β0/l

3).

5.2 lTEBD Calculations

In this section we present our results from exact and numerical lTEBD (Sec-
tion 4.1) simulations performed with the Hamiltonian (5.9).

We will first analyse the time evolution of the system if the excitation
laser is switched on instantaneously with previously no Rydberg excitation
present in the lattice, i.e. the system is in a “vacuum” state |0〉. This state is
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the natural state to start in for an experimental realisation. We then perform
ground state calculations for various values of the detuning δ and the dipolar
interaction strength β0 at fixed small effective Rabi frequency Ω. In general,
it is a priori not clear how to experimentally prepare a ground state of the
system, due to the absence of a dissipative process. We will therefore answer
the question how close the system can be adiabatically driven to an anti-
ferromagnetic like (on average one Rydberg excitation on every second site)
ground state if we start in the state |0〉 and only vary Ω and δ at fixed β0.

5.2.1 Excitation Dynamics
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Figure 5.1: Rydberg excitation number as function of time, when simulating the
Hamiltonian (5.9) with Ω = 1, β0 = 10 and δ = 0 in a 30-site system. Initially the
system is in a vacuum state |0〉. We show several increasing values of the Hilbert
space truncation parameter χ. Interactions over a maximum of l = 10 sites are
taken into account. ∆t = 0.1 Ω−1.

Initially, we employ the lTEBD algorithm to simulate the real time evo-
lution of the total Rydberg excitation number Rn ≡∑N

i 〈n̂i〉, after switching
on the excitation laser at time t = 0 in a system of 30 sites initially in the
state |0〉. The effective Rabi frequency is normalised to Ω = 1, the inter-
action energy is chosen to be large with β0/Ω = 10 and the laser is exactly
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tuned to a Rydberg transition, δ = 0. To obtain valid results we have to
check up to what time our results reproduce the real physical behaviour.
Therefore, we have to find convergence for increasingly large values of our
Hilbert space truncation parameter χ, which limits the entanglement allowed
in the basis states during evolution. In figure 5.1 we plot time evolution up
to t = 20 Ω−1 for increasing values of χ = 30, 50, 70, 90, 110 and find that
the results with χ = 110 reproduce the correct behaviour up to a time of
approximately t = 20 Ω−1.
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Figure 5.2: Rydberg excitation number as function of time, when simulating the
Hamiltonian (5.9) with Ω = 1, β0 = 10 and δ = 0 in a 30-site system. Initially
the system is in a vacuum state |0〉. We show several increasing values of the
considered interaction length l. χ = 110, ∆t = 0.1 Ω−1.

We make the approximation of truncating dipolar interactions over more
than l sites in the Hamiltonian (5.9). To see to what extent this changes our
results, in figure 5.2 we show the same evolution as in figure 5.1 but with
fixed χ = 110 and increasing values of l = 4, 7, 10. We find small differences
between the curves for l = 4 and l = 7, but the latter one nearly completely
coincides with the results for l = 10. We conclude that the main physical
behaviour is captured by the results with l = 10.

In figures 5.2 and 5.1 we observe a relaxation to a time averaged excitation
number R̄n of approximately 6. If we would only consider next-neighbour
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interactions in a system with large β0, we would expect excitations on average
on every second site. Furthermore, due to a factor of 1/2 because of the
two possible combinations of these second-site excitations, we would expect
R̄n ≈ N/4. Including long-range terms will in general lead to a decrease
of this number due to blockades over more than neighbouring sites. Thus,
R̄n ≈ 6 in figures 5.2 and 5.1 is reasonable.

To verify the assumption of the excitation blockade, we can also analyse
correlations in the site occupation within our system. Specifically we are
going to evaluate the density-density correlation (DDC) at site i of the form

G [i]
k ≡ 〈n̂in̂i+k〉

〈n̂i〉〈n̂i+k〉
, (5.12)

which is normalised to one if no correlations between the occupation numbers
of sites i and i + k are present.
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Figure 5.3: The density-density correlation evaluated from site 6 to 25 (i = 6),
for times between t = 15 Ω−1 and t = 20 Ω−1 in the evolution process of figures
5.2, 5.1.

In figure 5.3 we plot the DDC for several time snapshots between the
times 15 and 20, where the system has already relaxed to an average total
excitation number. We find that also G [i]

k is very similar at all this points in
time, especially the behaviour over the first 5 sites is common to all curves.
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We observe an almost perfect blockade for excitations on neighbouring sites,
whereas the small peak at k = 2 indicates an increased probability for states
with excitations on every second site. For large site differences, no correla-
tions are visible.

It is also interesting, to not only observe the DDC, but also purely
quantum mechanical correlations, i.e. entanglement, emerging during time-
evolution. Due to our TEBD simulation technique, in each time step we can
easily evaluate the von Neumann entropy S, since we already have a matrix
product state representation expanded into Schmidt eigenbases {|Φ[b]L

αb 〉} and

{|Φ[b]R
αb 〉} to the left and the right of a specific bipartite splitting (bond) b of

the system (see section 2.1, equation (2.17)). The von Neumann entropy, a
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Figure 5.4: The von Neumann entropy as a function of time for all bipartite
splittings (Bonds) in a system of 30 sites. The evolution is simulated under the
Hamiltonian (5.9) with Ω = 1, β0 = 10 and δ = 0. The initial state is |0〉. χ = 110,
∆t = 0.1 Ω−1. The linies indicate contours of constant entropy.

measure for bipartite entanglement can therefore be immediately evaluated
from equation (2.8) with the Schmidt coefficients λ

[b]
αb ,

S = −
χ∑

αb

λ[b]2
αb

log2(λ
[b]2
αb

). (5.13)
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In figure 5.4 we plot the time evolution of the von Neumann entropy as
a function of time and for each bond in the 30-site system. We find that in
the centre of the system, entanglement continuously increases until a time
of approximately t = 15 Ω−1 and then saturates at a value of approximately
S = 3.5. We thus conclude that entanglement plays a crucial role in an
understanding of the state emerging from a sudden switch on of the laser and
mean-field Gutzwiller treatments, which assume product state dynamics, are
in general questionable for this system. Note that the maximum possible von
Neumann entropy could occur in the centre of the 30-site system and would be
Smax = 15. With our truncation parameter we can in principle capture basis
states with a maximum bipartite entanglement of Sχ=110 = log2(110) ≈ 6.78.

5.2.2 Ground State Calculations

We calculate ground states for a 30-site Rydberg system introduced in section
5.1 with Hamiltonian (5.9), using evolution in imaginary time within our
lTEBD algorithm.
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Figure 5.5: Rydberg excitation number of the ground states obtained from an
imaginary lTEBD time evolution (χ = 30) in a 30-site system with long-range
interactions included over l = 10 sites. The system Hamiltonian is (5.9) with
Ω = 0.1. Shown are several values of detuning δ/Ω and interaction strength β0/Ω.
The lines indicate the contours of constant excitation number.
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In figure 5.5, we start our investigation by plotting the total ground state
Rydberg excitation number Rn ≡ ∑N

i 〈n̂i〉 as a function of the detuning δ
and the dipolar interaction strength β0, both normalised by an effective Rabi
frequency of Ω = 0.1. We plot the results on a grid with −20 ≤ δ/Ω ≤ 20
and 0 ≤ β0/Ω ≤ 50 with spacing ∆δ/Ω = 4 and ∆β0/Ω = 5.

Numerically we find convergence by considering an interaction length of
10 sites and it turns out that a small Hilbert space truncation parameter of
χ = 30 already suffices. The small χ value can be understood by the fact
that Ω is small and therefore the Hamiltonian (5.9) is almost diagonal, i.e.
very similar to a classical Ising model with additional long-range interactions.
Thus, ground states will in general contain only little entanglement.

In figure 5.5, as one might expect, we find regions with no excitation
present in the lattice for large positive detunings, i.e. negative chemical po-
tentials at arbitrary interaction strengths β0. In contrast, in regions with
weak interactions and large negative detunings we find states with full occu-
pation of all 30 lattice sites. A positive chemical potential leads to a reduction
of the total energy when Rydberg excitations are added to the system and
thus competes with the penalty of an increased interaction energy. For neg-
ative chemical potential, Rydberg atoms lead to an increased overall energy
in addition to their interaction energy and are thus suppressed. Interesting
behaviour arises when observing, for example, a line of constant detuning
δ/Ω = −12 and increasing interactions from β0/Ω = 0 to β0/Ω = 50. In
the case of β0/Ω = 0 and β0/Ω = 5, we find that almost all 30 sites are
occupied. Following that, in the region of 10 ≤ β0/Ω ≤ 30 we find that
the excitation number almost remains fixed at a value of 15, whereas after
some intermediate values it tends to a value around 10 for β0/Ω = 45 and
β0/Ω = 50. Therefore, we conclude that Rydberg atoms in the states for
10 ≤ β0/Ω ≤ 30 are on average excited on every second site, i.e. the ground
state is “anti-ferromagnetic” like, and for β0/Ω = 45 and β0/Ω = 50 on every
third site.

To verify this assumption we are plotting the density-density correlation
G [i]

k ≡ 〈n̂in̂i+k〉/〈n̂i〉〈n̂i+k〉 for the ground states along the δ/Ω = −12 line
in figure 5.6. The evaluation is performed between sites number 11 and
30 to also observe the effect of the boundary. Indeed, we find that in the
case of β0/Ω = 0, 5, the DDC remains flat at a value of 1. Suddenly, for
10 ≤ β0/Ω ≤ 30 a marked correlation with peaks on every second site appears
and after some random behaviour for β0/Ω = 35, 40, a correlation with peaks
on every third site becomes visible for β0/Ω = 45, 50.
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Figure 5.6: Ground state density-density correlations evaluated between sites 11
and 30 (i = 11) in a 30-site system with long-range interactions over l = 10 sites.
The results are obtained from an imaginary lTEBD time evolution (χ = 30). The
system Hamiltonian is (5.9) with effective Rabi frequency Ω = 0.1 and detuning
δ/Ω = −12. Shown are results for several values of β0/Ω.
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5.2.3 Adiabatic Driving

It is an interesting question whether it is possible to reach an anti-ferromagne-
tic like phase with a DDC as in figure 5.6 for the region 10 ≤ β0/Ω ≤ 30, by
starting in a vacuum state |0〉 and adiabatically changing the laser parameters
detuning δ and effective Rabi frequency Ω. We do not expect that this
procedure works in the limit of an infinite system, since we encounter a
disappearing energy gap ∆E between the ground and the first excited state
in this case. However, since we are dealing with a finite system, we are going
to analyse to which extent we can reach a state with a DDC close to the one
shown in figure 5.6 when changing the parameters sufficiently slow.

Exact Simulations for an 8-Site System
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Figure 5.7: The overlap (fidelity) of the system state with the ground state at
given points, when driving δ from 0.5 to −1.5 at constant Ω = 0.01 . The results
are from an exact time simulation of an 8-site system with Hamiltonian (5.9)
(β0 = 1). Shown are results for different velocities |∆δ/∆t| with ∆t = 0.1 β−1

0 .
Initially, the system is in the ground state with δ = 0.5. Even at slow δ variations,
the fidelity dramatically decreases at the point where δ becomes negative.

For a first overview, we are going to observe an exactly solvable system
of 8 sites with the Hamiltonian (5.9) in which we normalise the interactions
strength to β0 ≡ 1. Initially we start in the state |0〉, which is the exact
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ground state of the system in the limit δ → ∞, i.e. for an infinite negative
chemical potential.

As a first try, we start by switching on the laser, resulting in a fixed
small effective Rabi frequency of Ω = 0.01 and an initial δi ≫ 0 detuning.
We simulate the time evolution of the state, while slowly decreasing δ to
a value of δf = −1.5, which is a regime where we previously found a nice
anti-ferromagnetic like ground state.
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Figure 5.8: The energy gap ∆E between the ground and the first excited state
of an 8-site system with Hamiltonian (5.9) (β0 = 1) on a Ω-δ grid. ∆E vanishes
rapidly when changing δ from 0.5 to 0 at a small Ω. The lines are indicating the
contours of constant ∆E.

In figure 5.7 we find that this procedure fails. To not have to simulate the
change in δ over a large range, in this figure we start at a ground state of the
system with δ = 0.5 and then decrease the detuning at different velocities
|∆δ/∆t| = 10−2, 10−3, 10−4, where for all our calculations we are using a
time-step of ∆t = 0.1 β−1

0 . After each time step we calculate the inner
product of the actual state with the ground state of this point, that is

F ≡ |〈Ψ|ΨG〉|, (5.14)

with |Ψ〉 being the actual system state and |ΨG〉 being the actual ground
state. We find that this fidelity dramatically decreases when reaching a
regime of small negative δ.
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The reason why the fidelity drops down to very small values even in case
of very slow variation velocities can be understood by looking at the energy
gaps of the system. In figure 5.8 we plot ∆E, i.e. the energy difference
between the ground and first excited state on a Ω-δ grid. We use a grid
spacing of ∆δ = 0.03 and ∆Ω = 0.002.

In regions of detuning δ ≫ Ω we find that ∆E ≈ δ, which can be under-
stood by the fact that in this case |0〉 is the ground state of the system and
the first excited state consists of one Rydberg excitation costing an energy
of approximately δ.

In figure 5.8, we observe that when changing δ from 0.5 to 0 at a small
constant Ω, ∆E → 0 rapidly, which is the reason why the adiabatic procedure
from figure 5.7 does not work. However, figure 5.8 suggests a different way
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Figure 5.9: The overlap (fidelity) of the system state with the ground state, when
driving Ω from 0.20 to 0.01 at constant δ = −1.5. The results are from an exact
time simulation of an 8-site system with Hamiltonian (5.9) (β0 = 1). Shown are
results for different values of ∆Ω/∆t with ∆t = 0.1 β−1

0 . Initially, the system is in
the ground state. We can reach a final ground state with over 99.9% fidelity.

to adiabatically drive to the ground state with δ = −1.5 and Ω = 0.01 at
normalised β0 = 1. To steer around the “obstacles”, namely a vanishing
energy gap, one can firstly increase Ω to a value of 0.2 at constant large
detuning δ and secondly decrease δ to −1.5 at a constant Ω = 0.2. Both of
these to steps can be achieved by changing the parameters δ and Ω reasonably
fast due to the large gap ∆E present at all times. Afterwards, Ω can be
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decreased to a small value on a line of constant δ, where ∆E decreases much
more slowly than in the previous example in figure 5.7.

For simplicity we again assume that the ground state with Ω = 0.2,
δ = −1.5 at normalised β0 = 1 can be reached up to a very high accuracy
and concentrate on the critical region. Assuming that we can start in the
ground state, in figure 5.9 we plot the fidelity in the case that Ω is decreased
from 0.2 to 0.01 at constant δ = −1.5 and for different velocities ∆Ω/∆t =
10−1, 10−2, 10−3, 10−4. We find that even in the very fast varying case of
∆Ω/∆t = 10−1 we can reach a ground state with higher fidelity than in the
|∆δ/∆t| = 10−4 example in figure (5.7). In the case of ∆Ω/∆t = 10−4 we
can reach a final ground state with a fidelity of over 99.9%!

lTEBD Simulations for a 30-Site System

Analogous to the 8-site calculations, we are now going to find a way to reach
a high-fidelity anti-ferromagnetic like ground state for a system of 30 sites
by utilising the lTEBD algorithm.
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Figure 5.10: Density-density correlations for ground states of a 30-site system.
The system Hamiltonian is (5.9) (β0 = 1) with δ = −1.1. The DDCs are evaluated
between sites 6 and 25 (i = 6) for several values of Ω. The ground states are
obtained by imaginary time evolution within the lTEBD algorithm. χ = 50.
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We again normalise the Hamiltonian (5.9) by β0 ≡ 1. We then find a nice
anti-ferromagnetic like ground state for small values of 0 . Ω . 0.15 at a
detuning of δ = −1.1. This can be seen in figure 5.10, where the DDC for
ground states with δ = −1.1 is plotted for several values of Ω. The results
are obtained by imaginary time evolution within our lTEBD algorithm.

We are going to proceed like for the 8-site system but will now perform
the time evolution for a full path, starting in the vacuum state and resulting
in a state close to the ground state with Ω = 0.05 and δ = −1.1. Therefore,
we perform real time simulations for 3 paths. For each path we are using a
time step of ∆t = 0.1. Initially we start in the vacuum state |0〉 with values
Ω = 0.05 and δ = 3, for which the fidelity to the calculated ground state is
approximately 99.99%.
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Figure 5.11: The overlap (fidelity) with the ground state, when driving Ω from
0.50 to 0.05 at constant δ = −1.1 for different values of ∆Ω/∆t with ∆t = 0.1 β−1

0 .
Initially paths 1. and 2. (see text) are simulated. The results are from a 30-site
system utilising the TEBD algorithm with the Hamiltonian (5.9) (β0 = 1). χ = 50.

1. We increase Ω from 0.05 to 0.5 at δ = 3 with ∆Ω/∆t = 0.05. The final
fidelity is over 99.9%.

2. We decrease δ from 3 to −1.1 at Ω = 0.5 with ∆δ/∆t = 0.05. The final
fidelity is approximately 99.8%.
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3. We decrease Ω from 0.5 to 0.05 with several values of ∆Ω/∆. Results
for the fidelity are shown in figure 5.11.

We observe that we can reach the ground state at Ω = 0.05 with an
overlap of about 99.6% when changing Ω with a rate of ∆Ω/∆t = 1 × 10−4.

In figure 5.12, we show to what extent the final state represents the DDC
of the ground state with Ω = 0.05 depending on the value of ∆Ω/∆t. In
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Figure 5.12: The Density-density correlation evaluated between sites 6 and 25
(i = 6), after driving Ω from 0.50 to 0.05 at constant δ = −1.1, for different values
of ∆Ω/∆t with ∆t = 0.1 β−1

0 . The results are from a 30-site system utilising the
TEBD algorithm with Hamiltonian (5.9) (β0 = 1). χ = 50.

this figure, we find marked differences in the shape of the correlations of
the final state, obtained for the three “fast” driving velocities of ∆Ω/∆t =
5 × 10−3, 1 × 10−3 and 5 × 10−4 with a final overlap of less than 90%. In
contrast to the DDC resulting from the ground state, in these cases we do
not find a DDC, which is vanishing completely on every second site over a
long range. However, we find that the correlation is converging to the one of
the ground state with decreasing ∆Ω/∆t. In the case of the slowest driving
velocity ∆Ω/∆t = 1 × 10−4 considered in our calculations, we obtain an
excellent significant anti-ferromagnetic like correlation over all 19 sites. This
correlation is very close to the one of the original ground state and small
differences are only visible in the heights of the first three peaks.



5.2. lTEBD Calculations 117

We finally want to compare the time required for reaching this final
ground state with experimentally accessible timescales. In the scheme pre-
sented above, at the slowest final changing rate of ∆Ω/∆t = 1× 10−4 a total
time of 4591 in units of 1/β0 is required. Note that this time could be further
dramatically decreased by looking for shorter paths or by not using a constant
driving velocity, but rather reducing it with time while approaching the final
state. In reality the next-neighbour dipole-dipole interaction energy β0 can
be calculated from equations (5.10) and (5.5). For example, with n = 20 we
find a value of approximately 16 GHz. Therefore, our total simulation time
corresponds to approximately 0.26 µs in a realistic experiment. This value
for example is well below the typical lifetime of n = 20 Rydberg levels for
Rubidium, which can be found to be approximately 5 µs [11]. In general, this
timescale limits experiments with Rydberg atoms and thus we conclude that
the presented procedure above can in principle be implemented in realistic
experimental setups.
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Chapter 6

Conclusion & Outlook

We studied two systems with atoms in optical lattices numerically: (i) The
dynamics of a superfluid current in the 1D Bose-Hubbard model, and (ii)
Ground state correlations and time evolutions in a 1D lattice system of Ry-
dberg atoms, including the effects of long-range interactions. To numerically
simulate (ii), we extended the existing TEBD simulation technique [1] to
work with interactions over larger distances than neighbouring sites in a 1D
lattice Hamiltonian.

1. Superfluid Boson Currents in 1D Lattices

In chapter 3 we investigated the crossover diagram for 1D superfluid
currents within the Bose-Hubbard model. We found regions in which
currents remain constant over long timescales and regions where it de-
cays to zero rapidly. The superfluid behaviour depends on the ratio of
the on-site interaction U to the tunnelling parameter J in the Bose-
Hubbard Hamiltonian and the magnitude of the initial current.

In contrast to previous analytical work in [2, 3], we were able to anal-
yse the current stability in 1D for arbitrary interaction strengths. We
achieved our results by employing the numerical iTEBD technique [4], a
near-exact simulation algorithm for infinite 1D lattice Hamiltonians in
the low-energy regime. With this numerical work, we could interpolate
between the analytical solvable limits of strong and weak interactions.
Unlike previous numerical mean-field studies in [2, 3], we were able to
fully take into account quantum fluctuations.

The method we analysed the system is directly comparable to exper-
imental implementations, for example in [5]. We accelerate the parti-
cles, initially located in a superfluid ground state, to a desired quasi
momentum and observe the real time evolution of the condensate frac-
tion within a finite region of our infinite system. Both steps can be

119
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performed in an optical lattice experiment by firstly accelerating the
whole lattice potential (detuning the lattice laser beams) and after-
wards observing interference patterns in a time-of-flight measurement.

This experiment has already been performed for 1D systems in the
weakly-interacting Gross-Pitaevskii regime in [5]. In the future, it
should also be possible for a regime in which the Bose-Hubbard model
is valid. Data from such experiments could be directly compared to
our quantitative numerical results.

2. Rydberg Excitations in 1D Lattices

We analysed a system of Rydberg atom excitations in an optical lattice
potential (Chapter 5) and thereby gave an example of how a spin-1/2
model Hamiltonian can be engineered in an optical lattice. In this
model, atoms are loaded into the lattice and an excitation laser is tuned
to a Rydberg transition. Excited atoms give rise to strong interactions
over long-ranges due to their large dipole-moment, which for example
leads to excitation blockade effects in their vicinity. This model could
be useful for implementations of quantum gates [6,7] or the realisation
of a quantum simulator.

We studied the dynamics of this system in real time simulations and
calculated ground-states by utilising a variation of the TEBD simula-
tion technique [1]. We extended this algorithm, which is capable of
exactly simulating 1D slightly entangled lattice systems with nearest-
neighbour interactions, to work with longer-range interactions in chap-
ter 4 (lTEBD). We analysed the emergence of density-density correla-
tions and entanglement as a function of time. We start from an initial
state with no Rydberg excitation present, i.e. all spins are in the |↓〉
state, which is exactly tailored to an experimental situation. We pre-
sented a method to dynamically prepare an anti-ferromagnetic phase
of the system on experimentally realisable timescales.

Rydberg excitation suppression effects have been already observed ex-
perimentally and first quantum gate realisation experiments are very
promising. The system that we simulated in chapter 5 could be also
implemented in the future. Our lTEBD algorithm can guide such ex-
periments in the sense that it can directly propose schemes to prepare
interesting quantum states.

However, 1. and 2. are just two examples of what can be achieved with
current time-dependent DMRG/TEBD algorithms. With these techniques,
one is not limited to extract certain ground state properties, but can also
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simulate real time-evolutions. This makes it possible to directly propose and
test possible experiments in optical lattices. As outlined in chapter 2, by em-
ploying next-neighbour TEBD calculations already many dynamical effects
in 1D lattice systems have been successfully studied. With the implemen-
tation of long-range interactions, even more than the already vast amount
of 1D next-neighbour lattice models are accessible by this way. With the
development of new algorithms, which are using matrix product operators,
these systems could be also simulated very efficiently in infinite systems in
which no boundary effects are present.

For future implementations of quantum information processing schemes
or quantum simulator realisations, interactions over long ranges can be very
important, like in a system of Rydberg atoms [6, 7]. Similar interesting sys-
tems, which also give rise to lattice Hamiltonians with dipolar interactions,
consist of polar molecules in free space [8] or in an optical lattice potential [9].
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